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Traditional cross-platform development workflow 
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Traditional cross-platform development workflow on multiple host platforms 
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Scalability of the traditional cross-platform development model 
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What is CROPS? 
 

CROPS is an open source, cross-platform development framework 
that leverages Docker containers to provide an easily managed, 
extensible environment which allows developers to build binaries for a 
variety of  architectures and use native Linux tools on Windows, Mac 
OS X and Linux hosts.  
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What Value does CROPS provide? 
CROPS provides the following capabilities: 

•  a solution to allow cross building for different targets from Windows, Mac, & 
Linux hosts 

•  the ability to leverage Linux based tools in addition to the cross compiler e.g. 
bitbake, image creator, kernel menuconfig, perf, oprofile 

•  a path to embrace the cloud as part of  the solution 
•  an alternative to a full Linux VM 
•  easy toolchain distribution and updates 
•  a clean, reproducible state for development and testing 
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Native Solution   
Port the Linux toolchains for all the desired architectures to each of the desired hosts 
 

PROS CONS 
No added complexity from containers Need to qualify N toolchains on M hosts 

Based on well known technologies Windows represents several hosts (7,8,8.1,10, 
future…) 

Meets user expectation for a toolchain 
app 

Toolchain updates are likely monolithic, making 
rollbacks harder 

Easily polluted by host environment 

Remote builds infeasible 
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Containers Solution 
Leverage containers to solve problem needs while relying on the host for the graphical IDE 
 
PROS CONS 
Need to qualify N toolchains on only 1 
container 

Containers add additional level of 
complexity (largely hidden) 

Easy toolchain distribution, updates, and 
rollbacks 

Based on forward-looking, state of the art 
technologies 

Isolated from host environment   

Supports remote builds   

Active community support enabling containers 
on different hosts 

  

The primary advantage of containers is that we concentrate on the API and what is inside the 
container while others manage the issue of making it work on diverse platforms.  
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Scalability of the CROPS development model 
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What the framework allows 
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How CROPS works 
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Current Status – Project Home (https://git.yoctoproject.org/cgit/cgit.cgi/crops/) 
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Current Status - GitHub mirror with wiki (https://github.com/todorez/crops) 
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Current Status – DockerHub (https://hub.docker.com/r/crops/) 
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Current Status - CLI 
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Current Status – Eclipse IDE plug-in 
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Future Plans 
 
 
 
 
 

•  RESTful API 
•  Current framework uses Internet sockets 
•  Firewalls allow only well known ports through (e.g 80, 443) 

•  Remote Toolchain/Projects Support 
•  Host toolchain containers remotely 
•  Store project workspaces remotely 
•  Share toolchains 

•  Toolchain descriptors 
•  Describe toolchain capabilities 
•  Supported architectures 
•  Default compiler flags 
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Future Plans 
 
 
 
 
 

•  Dynamic Eclipse IDE UI 
•  Provide different UI perspectives based on toolchain capabilities 
•  RTOS builds vs userspace application builds 
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Challenges 
 
 
 

•  Remote Projects Support 
•   File synchronization 
•   Depends on Internet connectivity 
•   Binary File Diffs 

 
•  Debugging from Eclipse on Windows 

•   Pseudo terminals on Windows 
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DEMO 
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Q & A 
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