
1

Unchain Your Toolchains with CROPS
(CROssPlatformS)

Todor Minchev
todor.minchev@linux.intel.com

Intel Open Source Technology Center

Embedded Linux Conference
San Diego, 5 April 2016

2

Agenda

•  Traditional Cross-Platform Development Workflow
•  CROPS Definition & Value
•  Native Tools vs CROPS Containers
•  Technical Overview
•  Current Status
•  Future Plans & Challenges
•  Demo
•  Q & A

3

Traditional cross-platform development workflow

4

Traditional cross-platform development workflow on multiple host platforms

Windows

Linux

Mac OS X

Linux

Windows

Mac OS X

5

Scalability of the traditional cross-platform development model

DEVELOPMENT HOST (N) SDK (N X M) TARGET PLATFORMS (M)

X86

X86 ARM

MIPS

OTHERS
ARM

Windows
X86

ARM

MIPS

MIPS OTHERS

Mac OS X
X86

ARM
OTHERS
 MIPS

OTHERS

6

7

What is CROPS?

CROPS is an open source, cross-platform development framework
that leverages Docker containers to provide an easily managed,
extensible environment which allows developers to build binaries for a
variety of architectures and use native Linux tools on Windows, Mac
OS X and Linux hosts.

8

What Value does CROPS provide?
CROPS provides the following capabilities:

•  a solution to allow cross building for different targets from Windows, Mac, &
Linux hosts

•  the ability to leverage Linux based tools in addition to the cross compiler e.g.
bitbake, image creator, kernel menuconfig, perf, oprofile

•  a path to embrace the cloud as part of the solution
•  an alternative to a full Linux VM
•  easy toolchain distribution and updates
•  a clean, reproducible state for development and testing

9

Native Solution
Port the Linux toolchains for all the desired architectures to each of the desired hosts

PROS CONS
No added complexity from containers Need to qualify N toolchains on M hosts

Based on well known technologies Windows represents several hosts (7,8,8.1,10,
future…)

Meets user expectation for a toolchain
app

Toolchain updates are likely monolithic, making
rollbacks harder

Easily polluted by host environment

Remote builds infeasible

10

Containers Solution
Leverage containers to solve problem needs while relying on the host for the graphical IDE

PROS CONS
Need to qualify N toolchains on only 1
container

Containers add additional level of
complexity (largely hidden)

Easy toolchain distribution, updates, and
rollbacks

Based on forward-looking, state of the art
technologies

Isolated from host environment

Supports remote builds

Active community support enabling containers
on different hosts

The primary advantage of containers is that we concentrate on the API and what is inside the
container while others manage the issue of making it work on diverse platforms.

11

Scalability of the CROPS development model

DEVELOPMENT HOST (N) CROPS SDK(M) TARGET PLATFORMS (M)

X86

ARM

MIPS

OTHERS

X86

ARM

Windows
MIPS

Mac OS X
OTHERS

12

What the framework allows

12

DISPATCHER

Other custom
toolchains can
be added

X86 Cross Compiler
Container

Yocto Project
Extensible SDK

Container

Zephyr SDK Container

Available
Opportunities
Future

ARM Cross Complier
Container

REGISTER
Windows, Linux
and Mac OS C
Native Eclipse

Plugin

Windows Visual
Studio Plugin

XCode Plugin

API

•  Request toolchain
•  Build project
•  …..

Shared
Host Folder

Cloud
Share ……. OR ……

Source code and meta data

Toolchains Development Host

13

How CROPS works

13

Shared
Host Folder

Cloud
Share ……. OR ……

Build Device Container Development Host
(Windows, Linux, Mac OS X)

Build Device
Agent

Toolchain

IDE
(Eclipse,

VisualStudio,
XCode)

Host Build
Manager

Source
Code

TOOLCHAIN REGISTER

SERVICE R REQUEST

COMPILER OUTPUT
DISPATCHER

TARGET

MinnowBd
Edison
Galileo
etc READ/WRITE

RUN/
DEBUG

14

Current Status – Project Home (https://git.yoctoproject.org/cgit/cgit.cgi/crops/)

15

Current Status - GitHub mirror with wiki (https://github.com/todorez/crops)

16

Current Status – DockerHub (https://hub.docker.com/r/crops/)

17

Current Status - CLI

18

Current Status – Eclipse IDE plug-in

19

Future Plans

•  RESTful API
•  Current framework uses Internet sockets
•  Firewalls allow only well known ports through (e.g 80, 443)

•  Remote Toolchain/Projects Support
•  Host toolchain containers remotely
•  Store project workspaces remotely
•  Share toolchains

•  Toolchain descriptors
•  Describe toolchain capabilities
•  Supported architectures
•  Default compiler flags

20

Future Plans

•  Dynamic Eclipse IDE UI
•  Provide different UI perspectives based on toolchain capabilities
•  RTOS builds vs userspace application builds

21

Challenges

•  Remote Projects Support
•  File synchronization
•  Depends on Internet connectivity
•  Binary File Diffs

•  Debugging from Eclipse on Windows

•  Pseudo terminals on Windows

22

DEMO

23

Q & A

24

CROPS Team

Todor Minchev
todor.minchev@linux.intel.com

Brian Avery
brian.avery@intel.com

Tim Orling
timothy.t.orling@intel.com

25

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

•  Other names and brands may be claimed as the property of others.

Copyright © 2016 Intel Corporation.

