Using a JTAG in Linux lt

Driver Debugging

Supporting New Hardware u

Mike Anderson \
Chief Scientist

The PTR Group, Inc.

mailto: mike@theptrgroup.com

http:/ /www.theptrgroup.com

ELCSFOTAG

What We Will Talk About

#What are we trying to do?

#Hardware debuggers

#What is JTAG?

#How does it work?

#Board bring up

#The Linux boot sequence

#Debugging the kernel and device drivers

ELCSFOTAG2 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

What are we trying to do?

#The board bring-up process is loaded
with potential gotchas
» Obtaining data sheets may be near
impossible
» The hardware may or may not be working

» The boot firmware may have restrictive
licensing issues

#There are two phases of device driver
development that we’ll need to address
» Getting the board to work at all
» Adding features for peripherals

ELCSFOTAGS 0412010 - Copyrght 2010 The PTR Group .

/T

Porting Linux

#Bringing Linux up on a new board will
require some knowledge of assembly
language for your processor

» There are several transitions from
assembly to “C” and back if we’re using
zlmages

#Debugging at this level will require the
use of JTAGs, or other hardware
assistance

» Never underestimate the power of an LED

ELCSFOTAGH Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Device Drivers in Linux

#Linux has several driver types

» Character, block, network, etc.
#Linux uses a formal driver model

» Drivers present a common APl such as

open(), release(), read(), write(), etc.
#User-mode device drivers are also

possible
» Via /dev/mem, /dev/ioports, etc.
» Easier to debug using standard GDB

ELCSFOTAGS 0412010 - Copyrght 2010 The PTR Group .

/T

Statically Linked - Dynamically Loaded

#The typical kernel-mode driver can be
statically linked into the kernel at kernel
build time

» Must be GPL
» Initialized in start_kernel() sequence

#Dynamically-loaded drivers, a.k.a. kernel
modules are loaded after the kernel is
booted and init is running

» Can be loaded from initramfs/initrd
» Can have proprietary licenses

ELCSFOTAGS Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Driver Initialization Sequence

#Drivers must register themselves with the
kernel

» register_chrdev(), register_blkdev(),
register_netdev(), etc.

#For block and character drivers you’ll
need to assign major/minor numbers
» Can be done statically or dynamically

» Coordinate with
<linux>/Documentation/devices.txt

#You’ll need to create device nodes as well
» Statically or via UDEV

ELCSFOTAGT 0412010 - Copyrght 2010 The PTR Group .

/T

Loadable Module Example

#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>

#define MODULE_NAME “ELC"

int _init elc_init_module(void) {
printk (“elc_init_module() called, ");
return 0;

}

void __exit elc_cleanup_module(void) {
printk (“elc_cleanup_module() called\n");

}

module_init (elc_init_module) ;
module_exit (elc_cleanup_module) ;

ELCSFOTAGS Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Old School Driver Registration

#Kernel is made aware of a character
device driver when the driver
registers itself

» Typically in the __init function

#Registration makes the association
between the major number and
device driver

int register_chrdev(unsigned int major,
const char *name, struct file_ operations
*fops)

ELCSFOTAGS 0412010 - Copyrght 2010 The PTR Group .

/T

Old School Driver Registration #2

#Likewise, when a device
driver removes itself from
the system, it should
unregister itself from the
kernel to free up that major
number

#Typically in the __exit
function:

int unregister_chrdev (unsigned
int major, const char *name);

ELCSFOUTAG10 Q412010 - Copyrht £2010 The PTR Group . M_E'EE

New-School Driver Registration

#If you need to get beyond EE=———
the 256 major limit, you’ll
need to use a different
approach

» This uses a different API,
dev_t, cdev structures and a
much more involved
registration approach

#All of this is beyond scope
for the current discussion,
however

ELCSFOTAG 0412010 - Copyrght 2010 The PTR Group . ==

Giving Your Driver Something to do

3 Character device driver exports services
in file_operations structure
» There are 25 supported operations in the 2.6
kernel
- Up from 17 in the 2.4.kernel
- The function list has changed since early 2.6
kernels
3 You only supply those calls that make |
sense for your device (-
3 You can explicitly return error codes for soue: g cde
unsupported functions or have the
system return the default ENOTSUPP
error
3 Typically, the file_operations structure is
statically initialize
» Using C99 tagged initializer format

ELCSFOUTAG12 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

struct file_operations #1 of 2

struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char _user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char _user *, size_t,
loff_t *);

ssize_t (*aio_read) (struct kioch *, char _user *, size_t, Loff t);
ssize_t (*aio_write) (struct kioch *, const char _user *,
size_t, loff t);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned long) ;

long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long) ;
long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct

int (*£lush) (struct file *);

sosroass o414 o029 T G N =T

struct file_operations #2 of 2

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);

int (*fasync) (int, struct file +, int);

int (*lock) (struct file *, int, struct file lock *);

ssize t (vsendpage) (struct file *, struct page ¥, int,
ize t, loff t *, int);
unsigned lunq (*get_unmapped_area) (struct file *,
ignad long, unsigned long, unsigned long,
unsigned long s

int (*check_flags) (int) ;
int (*£lock) (struct file *, int, struct file lock *);
ssize t (*splice write) (struct pipe inode info .

trict file *, loff t ¥, size t, unsigned int);

ssize_t (*splice_read) (struct fxle *, loff t *,
pipe_inode_info %, sizs_t, unsigned int);
int (*setlease) (struct file *, long, struct file_lock **);

ELCSFOUTAG 1 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Which File Operations do | Need?

3 Typically, a driver will implement:
- open()
« release()
- ak.a. the user-space close()
- read()
- write()
+ ioctl()
3 Additional features like mmap(), poll(), fasync(), and
flush() are nice to haves
» You can add them at any time during development
Some methods like lIseek() and splice_read()/
splice_write() may not apply to your device
» You decide what to support and errors to return

ELCSFOUTAG-18 0412010 - Copyrght 2010 The PTR Group . ==

Initializing the file_operations

#C99 tagged initialization of the structures
allows you to initialize the fields by name
» No worry about the structure layout (which may
change between kernel revisions)
#Un-initialized function entries in the structure
shown below will be initialized to NULL

struct file_operations fops = {

.read = my_read,
.write = my_write,
.doctl = my_ioctl,
.open = my_open,

.release = my_release
Yi

ELCSFOUTAG18 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Debugging Device Drivers

#Statically-linked device drivers are notoriously
difficult to debug
» An error can cause a panic or oops before you can
even get printk() to work
» These will typically require a JTAG to debug them
easily
#Dynamically-linked drivers are marginally easier
because you can get more debugging
infrastructure into place before loading them
» The use of read_proc()/write_proc() functions and
printk() are typical
» JTAGs can help here too

ELCSFOUTAG17 0412010 - Copyrght 2010 The PTR Group .

/T

Hardware Debugging Tools

#The traditional hardware debug tool
was the In-Circuit Emulator (ICE)

if
» A device that plugged into the CPU fgn
socket and emulated the CPU itself o

#These were rather expensive s A
» $30K+ for the good ones \
#Today, most devices that call |
v .

themselves an ICE are actually JTAGs #

Source Hitex Dl Tk

ELCSFOTAG18 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Why the Traditional ICE has Faded Away

#The biggest problem faced by the
ICE concept was the increasing pin
counts of processors

» E.g., 939 pins for the Athlon-64

J#Each pin required a wire to the ICE

» Each wire started to become an antenna
as frequencies increased

#Processors also started to move to
Ball Grid Array (BGA) packages

» No way to get to the pins in the center
of the part because the part is soldered
to the motherboard

ELCSFOUTAG19 0412010 - Copyrght 2010 The PTR Group .

Enter the JTAG Port

#The Joint Test Action Group
(JTAG) is the name
associated with the IEEE
1149.1 standard entitled
Standard Test Access Port
and Boundary-Scan
Architecture

» Originally introduced in 1990
as a means to test printed
circuit boards

» An alternative to the bed of
nails

ELCSFOUTAG20 Q412010 - Copyrht £2010 The PTR Group . M_E'EE

How JTAG Works

#JTAG is a boundary-scan device that
allows the developer to sample the values
of lines on the device

» Allows you to change those values as well

#JTAG is built to allow chaining of multiple

devices
» Works for multi-core processors, too

ELCSFOTAG2 0412010 - Copyrght 2010 The PTR Group .

/T

JTAG Details

#JTAG is a simple serial protocol
» Enables the use of “wiggler’-style interfaces
#Configuration is done by manipulating the
state machine of the device via the TMS
line

" DEVICEL " DEVICE2 " DEVICE3

03 0

ELCSFOUTAG22 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

JTAG-Aware Processors

#Most embedded processors today support JTAG
or one of its relatives like BDM
» E.g., ARM/XScale, PPC, MIPS
#Even the x86 has a JTAG port although it is
rarely wired out
» Grandma can barely send e-mail, let alone know
what to do with a JTAG port
#Some processors like MIPS come in different
versions

» Some with JTAG ports for development, some without
in order to save $$$

ELCSFOUTAG2S 0412010 - Copyrght 2010 The PTR Group .

/T

JTAG Vendors

$#Several different vendors sell JTAG port
interface hardware
» JTAG is also referred to as On-Chip Debugging (OCD)
#Here are a few of the vendors:
» Wind River Systems (http://www.windriver.com)
» Abatron AG (http://www.abatron.ch)
» American Arium (http://www.arium.com)
» Olimex (http://www.olimex.com/)
#Some vendors do certain processors better than
others
» MIPS will usually have a more custom EJTAG interface

ELCSFOUTAG 24 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

JTAG Connections

#The maximum speed of JTAG is 100 MHz
» A ribbon cable is usually sufficient to connect

to the target

#Connection to the development host is

accomplished via
» Parallel port

» USB
» Serial port fi‘ ?
» Ethernet .

Source: Olmex

ELCSFOUTAG2S 0412010 - Copyrght 2010 The PTR Group .

/T

JTAG User Interface

#Some JTAG interfaces use
a GDB-style software
interface

» Any GDB-aware front end
will work

#Others have Eclipse plug-
ins to access the JTAG via
an IDE

#Some still use a
command line interface

ELCSFOUTAG28 Q412010 - Copyrht £2010 The PTR Group .

Source Windvezcom

What can you do with a JTAG?

#Typical JTAG usage includes reflashing boot
firmware
» Even the really cheap JTAG units can do this
#However, it is in the use as a debugging aid that
JTAG comes into its own
» You can set hardware or software breakpoints and
debug in source code
» Sophisticated breakpoint strategies and multi-core
debugging usually require the more expensive units
#JTAG units can also be used to exercise the
address bus and peripherals
» This is what JTAG was originally designed for

ELCSFOUTAGZY 0412010 - Copyrght 2010 The PTR Group . ==

Hardware Configuration Files

#Most JTAG units require you to describe the
hardware registers in a configuration file
» This is also how you describe what processor
architecture you are using
#All of that information about register maps that
you collected earlier now goes into the
configuration file
#Unfortunately, there is no standard format for
these configuration files
» Each JTAG vendor uses different syntax

ELCSFOUTAG28 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Example Configuration Files

#Many JTAG units split the configuration
files into a CPU register file and a board
configuration file

ELCSFOUTAG20 0412010 - Copyrght 2010 The PTR Group .

Developing the Configuration File

3 The JTAG vendor will likely already have a register file
for the processor
» ARM920, PPC8241, etc.
3 Your task will be to develop the board configuration file
» There may be a configuration file for the reference board that
you can use as a starting point
3 The configuration file is essentially a script of
commands to initialize the target board
» You keep working on it until you can initialize memory
» Once memory is on-line, you should then be able to write
values into memory via the JTAG that can be read back
» Then, enhance the configuration to initialize other peripherals

ELCSFOUTAG20 Q412010 - Copyrht £2010 The PTR Group . M_E'EE

Linux-Aware JTAGs

#There are several rather tricky transitions
during the Linux booting process
» Transitioning from flash to RAM

» Transitioning from physical addresses to
kernel virtual addresses

» These transitions require the use of hardware
breakpoints
#Make sure that your JTAG is “Linux aware”

» It must understand Linux’s use of the MMU to
be of much use for driver debugging

ELCSFOTAGS! 0412010 - Copyrght 2010 The PTR Group .

/T

The Linux Boot Sequence

3 Like the boot firmware, the Linux kernel starts in
assembly language
» Sets up the caches, initializes some MMU page table entries,
configures a “C” stack and jumps to a C entry point called
start_kernel() (init/main.c)
3 start_kernel() is then responsible for:
» Architecture and machine-specific hardware initialization
» Initializing virtual memory
» Starting the system clock tick
» Initializing kernel subsystems and device drivers
3 Finally, a system console is started and the init process
is created
» The init process (PID 1) is then the start of all user-space
processing

ELCSFOUTAGR2 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

JTAG and Early Kernel Debug

An odd thing happens when the MMU is enabled

» All of the physical addresses suddenly get translated
into virtual addresses

iBoot®

The kernel’s debug symbols are all built assuming a
virtual address space
» You'll need to turn debugging symbols on in the kernel
Consequently, while you can step through the early
code by using a hardware breakpoint address, S mtlogcom
software breakpoint on symbols will only work after
the MMU is enabled
» Fortunately, this happens fairly early in the kernel
initialization
You can typically tell the JTAG to step so many
instructions and then stop again
» Step past the MMU initialization, stop and then set
additional breakpoints

ELCSFOUTAG3 0412010 - Copyrght 2010 The PTR Group .

/T

Configure Kernel for Debugging

#Enable debugging info and rebuild the kernel

ano o a2 633 Contration
e s optn b
© Il E
i = fopin
= a8
e s o Syena oy
& ot i e et sy g ok
Serer Rk wnieie by
onavoo s o e
SoRmaTT s i ke s coc henbulang i
Pyl - EEESET
st S et st g

e bugging (OE8UG remieL)

Lo e 0100

T

Syt 68 KEAEL (-]

= cypgreoic i et Ko deuan
Guizson o

ELCSFOUTAG3 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Loading Symbols into the JTAG Ul

3 Depending on the JTAG Ul, you may simply have to
load the kernel’s vmlinux image to be able to access
the symbols by name

» The techniques for doing this vary by JTAG vendor
4 Attach the JTAG to the hardware
» Reset the board via JTAG and hold in reset
» Set H/W breakpoint using the JTAG
» Load the vmlinux via the JTAG (this loads the symbols)
» Command the JTAG to tell the hardware to “go”

3 Once you encounter the hardware breakpoint, you can

step in assembly until the MMU is enabled
» The MMU will translate physical addresses to virtual addresses
» Once virtual addressing is on, set breakpoints as normal

ELCSFOUTAG3S 0412010 - Copyrght 2010 The PTR Group . ==

Using JTAG to Dump printk Buffer

#If you kernel hangs right after displaying
“Uncompressing Kernel Image ... OK”
message...

» You probably have printk () output, but the
serial console isn’t initialized yet

#We can dump the printk buffer using the
JTAG!

» Look in the kernel’s System.map file for
something like “__log_buf”
$ grep _ log_buf /boot/System.map
c0445980 b _ log buf

ELCSFOUTAG% Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Dumping printk Buffer #2

#The address of the buffer is a translated kernel
address
» Strip off the 0OxC0000000 portion of the address to

get (typically) the physical address on processors like
the X86

> i.e., 0xc0445980 would typically be at physical
address 0x445980

» You must understand your processor to do the
translations correctly
#Now, use the JTAG to dump that address
» Raw printk output, but you can get an idea of what it
was doing when it crashed
» Data is still there even after reset (but not power-off)

ELCSFOUTAG 0412010 - Copyrght 2010 The PTR Group .

/T

GDB-Aware JTAGs

$#If the JTAG is GDB-aware, then you will be
able to control it using normal GDB
commands
» Attach to the JTAG via “target remote xx”
command where “xx” is via Ethernet, serial or
other connection between your JTAG and the
host
#Use the GDB “mon” command to pass
commands directly to the JTAG

ELCSFOUTAG38 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

DDD GUI Front-End Example

#Invoked from
command line with
vmlinux compiled
for debugging

#Then attach to JTAG
using “target
remote” command

ELCSFOUTAG3 0412010 - Copyrght 2010 The PTR Group .

/T

Debugging Device Drivers

#Statically linked driver symbols are
already built into the kernel’s symbol
table

» Simply set break points on the driver
methods themselves

#Dynamically loaded drivers require
additional steps

» We need to find the addresses used by the
driver

#The next few charts assume a GDB-aware
JTAG

ELCSFOUTAGAD Q412010 - Copyrht £2010 The PTR Group . M_E'EE

Debugging Loadable Modules

#In order to debug a loaded module, we need to
tell the debugger where the module is in
memory

» The module’s information is not in the vmlinux
image because that shows only statically-linked
drivers

#How we proceed depends on where we need to
debug

» If we need to debug the __init code, we need to set a
breakpoint in the 1cad module () function

ELCSFOTAGH 0412010 - Copyrght 2010 The PTR Group .

/T

Debugging Loadable Modules #2

#We’ll need to breakpoint just before the control
is transferred to the module’s __init
» Somewhere around line 2454 of module.c:
/* Start the module */
if (mod->init != NULL)
ret = do_one_initcall (mod->init) ;

#Once the breakpoint is encountered, we can
walk the module address list to find the
assigned address for the module

» We then use the add-symbol-file GDB command to

add the debug symbols for the driver at the address
for the loaded module

» E.g.,
7

1-file ./mydriver.ko -e .init.text

ELCSFOUTAGA2 Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

21

Debugging Loadable Modules #3

#Now, you can set breakpoints via the GDB
commands to the JTAG and tell the
system to continue until a breakpoint in
encountered

ELCSFOUTAGAS 0412010 - Copyrght 2010 The PTR Group . ==

What if the __init is Working?

$#If you do not need to debug the __init
code, then load the driver and look in the
/sys/modules/<module
name> /sections/.text for the address of
the text segment

#Next, use the add-symbol-file command
again, but use the .text address and omit
the “-e .init.text”

» Set your breakpoints and continue

ELCSFOUTAGH Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

User-Space Addresses

#Within Linux, each user-space application
occupy the same virtual address space

» The address spaces are physically different,
but the addresses overlap

0x80000000

Data Data Data

Code Code Code

0x1000000 App 1 App2 Appn
ELCSROTAGAS Q4142010 - Conyrght ©2010 The PTR Group

/T

JTAG Confusion

3 JTAGs normally run in what is called halt
mode debugging
» The entire processor is stopped when a given
breakpoint address is accessed
3 This works reasonably well in kernel space
» Only one kernel address space
3 While it is possible to debug user
applications with the JTAG, the JTAG can
get confused by seeing the same virtual
address in different applications due to
context switches
» This requires run mode support for the JTAG

ELCSFOTAGAS Q412010 - Copyrht £2010 The PTR Group . M_ﬂﬁ

Run-Mode Support

Using a debugging agent in user space and
register support like the ARM’s Debug
Communications Channel (DCC) we can
associate a virtual address to a particular
context

» This allows the breakpoint to only stop the Varr—
one application instead of any application
that matches the address ELEPHANTS
Only a few JTAGs support this run mode

debugging mechanism source:tpe-vicom
» Otherwise, we are left with normal GDB
process trace (Etra(e) debugging control via
an application like gdbserver
+# Naturally, GDB already does a reasonable
job for user-space debugging

» The need to use JTAG for user-space debug
is rare

" o414 o029 T G N =T

Summary

Hardware debuggers such as JTAG are invaluable for
exercising new hardware
» They let us test address lines and registers
3 Once we can configure the board via the JTAG, we then
take that info and use it to port the boot firmware
» We can usually burn the boot firmware into flash via the JTAG as
well
3 Once the boot firmware is loading Linux, the JTAG can
then help again in early kernel debugging and device
driver debugging
3 Don’t start your next bring-up project without one!
3 Demo time...

#

ELCSFOUTAGAS Q412010 - Copyrht £2010 The PTR Group .

4

