VM-to-VM Communication Mechanisms for Embedded

Stefano Stabellini

Existing VM-to-VM Communication Mechanisms

> Existing protocols: Xen PV Drivers, VirtlO

- >> discoverable and dynamic
- >> create new connections at runtime
- >> made for IO virtualization
- > A frontend in the guest connects to the backend in Dom0 / hypervisor
- > Created to virtualize devices
- > Typically based on memory sharing
- > VirtIO expects privileged backends

Static Partitioning

Static Partitioning

> Static Partitioning is similar to virtualization with some key differences:

- >> No dynamic VMs, a limited number of "partitions" instead
- >> Focus on direct assignment of hardware resources
- >> Configuration defined at "Build Time"
- >> Real-Time, Safety, and Short Boot Times are often key requirements

> Example: Xen Dom0less

Xen Dom0less

Xen Dom0less

Xen Dom0less Current Status

- > Static Partitions defined at build time
- > Fast boot times, real-time support, easier to safety-certify
- > Dom0 is not required
- > No "out of the box" communication mechanisms available

Static Partitioning and Communication

> Often only VM-to-VM communication is required, not device virtualization

- >> There are enough physical devices to directly assign them to VMs as needed
- >> Device virtualization can be interesting for sharing an SD card among multiple VMs

> VM-to-VM communication is different from device virtualization

- >> A simple VM-to-VM channel to send and receive raw data
- >> It doesn't need "frontends" and "backends"
- >> It requires a smaller code base
- >> It is faster for exchanging data but it is unwieldy for virtualizing devices

> Static definition of VM-to-VM communication channels

- >> Define connections at "build time"
- >> Required for safety

> No privileged backends

Required for safety

> Support Linux and non-Linux guests (Zephyr, FreeRTOS, WindRiver, QNX, etc.)

Static Partitioning VM-to-VM communication

> No privileged backends

Xen PV Drivers

> Solid and hardened in production for years (AWS)

- > Made for device virtualization, can be used for communication:
 - >> Network
 - >> Block (disks)
 - >> Console
 - >> 2D graphics, mouse and keyboard
 - >> Sound
 - >> Etc.

> Pros:

- >> Very Fast Unprivileged Backends
- >> Available for Linux, BSDs and Windows, less common among RTOSes

> Cons:

- >> Might not be available in certain embedded RTOSes (but BSD versions exist for all PV drivers)
- >> Dom0less support is work-in-progress

Xen PV Drivers and Dom0less

Xen PV Drivers and Dom0less

- > Domains booted in parallel
- > PV Drivers connections created after Dom0 is up and running
- > Advantages compared to regular non-Dom0less deployments:
 - >> Domains are still started very quickly
 - >> Domains can immediately begin to perform critical tasks
 - >> Overall time to get PV Drivers up and running is shorter (no domain creation needed in Dom0)

> To become available by the end of the year (work by Hipert/Lab @ Unimore)

VirtlO

> Frontend Drivers are available in most Operating Systems

> "VMM" provides the backends (e.g. QEMU, kvmtools, etc.)

> Pros:

>> Many virtual device classes

> Cons:

- >> Backends are currently required to be privileged backends must be in Dom0
 - Security implications
 - Safety implications
- >> Support for Xen is available, but it requires non-upstream toolstack patches
- >> No Dom0less support

VirtlO

VirtlO

> IOREQ infrastructure upstream in Xen

- >> It enables VirtIO backends and any other emulators to run in Dom0 (e.g. QEMU)
- >> No support in the Xen tools for creating VirtIO frontends/backends yet (patch available)
- >> PoC with virtio-block by EPAM
- >> Requires Backends with full privileges, they have to be in Dom0
- >> Good performance with full privileges

> Support for Unprivileged Backend is work-in-progress by Linaro Project Stratos

- >> Based on memory copies to/from a pre-shared memory region
- >> Performance to be determined (never done before, underlying protocols designed for sharing)

> How to enable VirtIO for Dom0less?

>> Could VirtIO device hotplug be used to avoid synchronous waiting during boot?

> Hypervisor-Mediated Data Transfers

HMX: pattern for data d	lelivery	
VM : Sender	VM : Receiver	
Message Data Hypervisor invoked to send message	Receive memory buffer Context Data	
Hypervisor Delivery period odata owrite	erformed by the hypervisor: a delivered with context (size, origin) es to the receive buffer, will conform to protocol / structure	

Argo

> Pros:

- >> Great performance and very strong security properties
 - Hypervisor checks against malicious data senders
 - Designed and optimized for memory copies
- >> More lightweight than Xen PV Drivers and VirtIO
 - No Xenstore, no PV backends, no VMM needed
 - Requires Event Channels and Argo drivers (BSD drivers available here and here)
- >> Straightforward Dom0less enablement: no need for any kind of "wait"
 - No need to wait for Dom0 to complete booting to communicate with other VMs

> Current Status:

- >> It requires one Linux patch to work with Dom0less
 - Thanks Alec Kwapis from DornerWorks!

> Cons:

>> Requires Argo driver and Xen event channels for notifications

Static Shared Memory and Interrupts

Static Shared Memory and Interrupts

E XILINX

arm

> Plain shared memory region

- >> Configured at "build time"
- >> Guests setups ring buffers over shared memory
- >> Can use OpenAMP RPMesg or any other communication libraries based on shared memory

> Interrupt-based notifications, work with any OSes

>> <u>New hypercall to inject SGIs</u> (patch by Xilinx)

> Pros:

- >> Very simple
- >> Works with any OS
- >> Great performance if used correctly

> Cons:

- >> One non-upstream patch to enable interrupt notifications
- >> Require your own communication library
- >> No dynamic connections

PL-based communication mechanisms

PL-based communication mechanisms

PL-based communication mechanisms

> Create Data Movers in Programmable Logic

- >> From simple Network Devices to optimized Data Movers
- > Assign PL resources to VMs
- > VMs use PL to send and receive data to/from other VMs

> Pros:

- >> Fastest for larger data sizes
- >> Userspace drivers only
- >> Easy to enable in any OS

> Cons:

>> Requires PL

Summary

Solution	Upstream Status for regular Xen	Upstream Status for Dom0less	VM-to-VM Communication vs. Device Virtualization	Compatibility	Performance	Unprivileged Backends
Plain shared memory & interrupts	Patch available for interrupts	Patch available for interrupts	Static VM-to-VM Communication	Can run anywhere	High if implemented correctly	Yes
Argo	Upstream	<u>One patch</u> <u>for Linux</u> <u>available</u>	Dynamic VM-to-VM Communication	Linux, Windows with a small effort	High	Yes
Xen PV Drivers	Upstream	Patches available soon	Unprivileged Device Virtualization	Most traditional OSes (Linux, Windows, BSDs)	High	Yes
VirtlO	Hypervisor: upstream Toolstack: <u>patches</u> available	No	Privileged Device Virtualization	Most traditional OSes (Linux, Windows, BSDs)	High with full privileged Otherwise: ?	No (work in progress)

Conclusions

> Several solutions are already available, but nothing works out of the box yet

> No one-size fits all:

- >> Shared memory and notifications: best for OS compatibility
- >> Argo: best for VM-to-VM communication
- >> Xen PV Drivers: best for virtual devices with unprivileged backends
- >> VirtIO: best for virtual device classes available

Demo

By Luca Miccio and Marco Solieri

Demo: Dom0less + PV Drivers NOR WM MUTHENSIS ET RECU UNIMORE UNIVERSITÀ DEGLI MODENA E REGGIO EMILIA 1175 **U-Boot** Hipert/Lab boots Xen boots DomU 1 Dom0 CPU CPU

Demo: Dom0less + PV Drivers

Adaptable.