
Mike Anderson
mike@theptrgroup.com

Herndon High School

FRC Team #116

Embedded Linux Moves
into High School

ELC-SanJose-0324-2 Copyright 2015, The PTR Group, Inc.

Goals

Why switch controls?

The roboRIO Controller

Peripherals

CAN bus

Example code

Summary

ELC-SanJose-0324-3 Copyright 2015, The PTR Group, Inc.

Goals

The goal of this presentation discuss the

deployment of embedded Linux into high

school robotics programs

New FIRST Robotics Competition roboRIO

controller

But, you should leave here some idea of the new

direction for FIRST controllers

Come to the showcase for more info

ELC-SanJose-0324-4 Copyright 2015, The PTR Group, Inc.

FIRST High School Robotics

FIRST Robotics Competition (http://USFirst.org)
For Inspiration and Recognition of Science and Technology
Founded by Dean Kamen (inventor of Segway among others)
~2904 teams reaching ~73,000 students in 19 countries

Two primary programs in high schools
FIRST Tech Challenge

New game every year
Smaller robots using newly announced
Android-based robot controller

Code in Java (maybe C/C++ via NDK)

FIRST Robotics Competition
New game every year
6 week build season
Robots up to 120 lbs
Powered by 12V SLA battery
Code in labVIEW, C/C++ or Java

ELC-SanJose-0324-5 Copyright 2015, The PTR Group, Inc.

Why Change the Controls?

The cRIO was getting very
long in tooth

400 MHz PPC running VxWorks

Many teams had started using
BBBs, Rpi and Arduinos to
supplement the sensor and
vision processing
The chassis had become a limitation

The number of slots and bus architecture became a
bottleneck
Weight was also an issue

The cRIO is an industrial device that is expensive
to build (and buy)

Limits the number that the average team could afford

ELC-SanJose-0324-6 Copyright 2015, The PTR Group, Inc.

New 2015 Control System

ELC-SanJose-0324-7 Copyright 2015, The PTR Group, Inc.

The RoboRIO

Made by National Instruments expressly for high school STEM
applications

Similar to myRIO unit built for
college-level applications

An ARM-based single board
computer that increases
performance and combines
the digital side car into a
smaller and lighter platform

Dual-core, 667 MHz ARM Cortex
A9 with:

256 MBs RAM (232 MBs usable)
512 MBs flash (386 MBs usable)
Xilinx Zync-7020 All Programmable
SoC

Running NI RT-Linux
3.2.35-rt52 Linux kernel

File system is derived from Yocto/OE project
Uses the same packages as the ARM Angstrom/Poky distribution
ipk format packages that use opkg package manager

ELC-SanJose-0324-8 Copyright 2015, The PTR Group, Inc.

Annotated RoboRIO

ELC-SanJose-0324-9 Copyright 2015, The PTR Group, Inc.

Power-Related Info

The RoboRIO requires 7-16VDC
Max current 45W
Idle current 5W

Most of the signals are 5V tolerant
Voltages are:

3.3V (max 1.225A)
5V (max 1A)
6V (max 2.2A)
7-16V (120mA)

The UART is 5V EIA RS232
Ready to plug into a PC
Do not plug directly into BBB, Rpi or Arduinos

Need to use level shifters on the UART or the magic blue
smoke will escape!

ELC-SanJose-0324-10 Copyright 2015, The PTR Group, Inc.

RoboRIO MXP Pin-out

The MyRIO Expansion Port allows for

additional I/O opportunities

MXP has

16 additional DIOs

Some pins can be
used as aux I2C
and SPI

4 analog inputs

2 analog outputs

1 UART

ELC-SanJose-0324-11 Copyright 2015, The PTR Group, Inc.

Digital I/O

The main roboRIO has:
10 DIO lines (each can be programed as input or
output)

20ns minimum pulse width

1 I2C (1 SDA and 1 CLK)
3.3V

400KHz max frequency

1 SPI bus (up to 4 devices)
4 MHz max frequency

Logic level:
5V-compatible LVTTL input

3.3V LVTTL output

ELC-SanJose-0324-12 Copyright 2015, The PTR Group, Inc.

PWM and Relay Lines

10 PWM channels
Output only
15mA max output current
330 ohm resistor in series

4 relay channels
4 forward, 4 reverse
5V output
7.5mA max current
680 ohm resistor in series

Max frequency 150 KHz
Output High Voltage: 4.75V-5.25V max
Output Low Voltage: 0.0V-0.25V max

ELC-SanJose-0324-13 Copyright 2015, The PTR Group, Inc.

Analog I/O

Analog input:

500 kS/s @ 12-bit resolution

+/- 16V overvoltage protection

500k ohm input impedance @ 500 kS/s

Analog output:

345 kS/s @ 12-bit resolution

+/- 16V overvoltage protection

0-5V output range

50 mV accuracy

3mA current drive

ELC-SanJose-0324-14 Copyright 2015, The PTR Group, Inc.

Onboard 3-axis Accelerometer

+/- 8G range

12-bit resolution

800 S/s

Very little information available during the beta

cycle about programming

ELC-SanJose-0324-15 Copyright 2015, The PTR Group, Inc.

New RoboRIO Web Server

New interface

for roboRIO

Used to load

new firmware

Requires

Microsoft

Silverlight

Addressing is now done via mDNS

roborio-<team #>.local

Option for enabling ssh server

ELC-SanJose-0324-16 Copyright 2015, The PTR Group, Inc.

Pneumatics Control Module (PCM)

CAN-controlled

Supports more than 1 PCM

Closed-loop operation

Jumper selectable 12V or

24V solenoid operation

ELC-SanJose-0324-17 Copyright 2015, The PTR Group, Inc.

Voltage Regulator Module

Regulated 5V and

12V

Both 500mA and

2A

Great for powering

Wi-Fi access point

Good brown-out

capability

ELC-SanJose-0324-18 Copyright 2015, The PTR Group, Inc.

Power Distribution Panel

PDP is smaller than
2014 unit
Dedicated outputs
for roboRIO, PCM
and VRM

Separate fuses

Power input is now
shielded

Requires 2.5mm metric hex drive

CAN bus interface
Allows measurement of current draw from slots
Has option for CAN bus termination

ELC-SanJose-0324-19 Copyright 2015, The PTR Group, Inc.

New Motor Controllers

Talon SRX
CAN-based equivalent to
earlier TI/Vex Jaguar
controller

Quadrature encoder input

Forward and reverse limit
switch inputs

VexPRO Victor SP
Essentially, PWM-based
Talon SRX

No additional inputs or
capability

ELC-SanJose-0324-20 Copyright 2015, The PTR Group, Inc.

CAN Bus

Controller Area Network

CAN is very reliable

CAN bus got a bad rep from the early
Jaguar motor controllers

Finicky RJ12 (6P4C) connectors
Tricky termination requirements
Slow update speeds
Thin traces would melt if the motor
stalled for excessive time

If you want to use Jaguars, they must be wired
separately

Their CAN packet format is different than the rest of the
CAN control system
Suggest using CTRE 2CAN to speed Jaguar CAN updates

ELC-SanJose-0324-21 Copyright 2015, The PTR Group, Inc.

CAN Bus #2

New PCM, PDP, Talon SRX and roboRIO all
have CAN bus support

Two-wire daisy chain with fail-through capability

Much faster than serial CAN from earlier seasons

RoboRIO has CAN termination

PDP has a jumper to select termination option

CAN bus is *required* for PCM and PDP (if
you want current-related data)

You can have more than one PCM on the robot if
you need more solenoids

ELC-SanJose-0324-22 Copyright 2015, The PTR Group, Inc.

New Project -- Simple Robot

ELC-SanJose-0324-23 Copyright 2015, The PTR Group, Inc.

New Project Result

ELC-SanJose-0324-24 Copyright 2015, The PTR Group, Inc.

Build the Project

Eclipse will default to building
the project automatically

However, you can clean and
build the project manually

Use the Project menu to
configure the auto-build
feature

ELC-SanJose-0324-25 Copyright 2015, The PTR Group, Inc.

Deploying to the Target

When the code is built, you
can select Run As->WPILib C++ Deploy

This will open an SFTP connection to the
roboRIO
the file system

The application will then start running
Waiting for the driver station

ELC-SanJose-0324-26 Copyright 2015, The PTR Group, Inc.

Example WPILib Robot Program

#include "WPILib.h"

#include "CameraFeeds.h"

class IntermediateVisionRobot: public SampleRobot {

 CANTalon *m_motor1;

 CANTalon *m_motor2;

 CANTalon *m_motor3;

 CANTalon *m_motor4;

 // Camerafeeds

 CAMERAFEEDS *cameraFeeds;

 // Encoder

 Encoder *omniWheel;

 // Joystick with which to control the relay.

 Joystick *m_stick;

 RobotDrive *robotDrive; // robot drive system

 // Numbers of the buttons to be used for controlling the Relay.

 const int kCam0Button = 1;

 const int kCam1Button = 2;

 const bool kError = false;

 const bool kOk = true;

ELC-SanJose-0324-27 Copyright 2015, The PTR Group, Inc.

Example WPILib Robot Program #2

public:

 void RobotInit() override {

 m_motor1 = new CANTalon(1);

 m_motor2 = new CANTalon(2);

 m_motor3 = new CANTalon(3);

 m_motor4 = new CANTalon(4);

 omniWheel = new Encoder(0, 1, false, Encoder::k4X);

 omniWheel->Reset();

 robotDrive = new RobotDrive(m_motor1, m_motor3, m_motor2, m_motor4);

 robotDrive->SetSafetyEnabled(1.0);

 // invert the left side motors

 // you may need to change or remove this to match your robot

 robotDrive->SetInvertedMotor(RobotDrive::kFrontLeftMotor, true);

 robotDrive->SetInvertedMotor(RobotDrive::kRearLeftMotor, true);

 m_stick = new Joystick(0); // Use joystick on port 0.

 cameraFeeds = new CAMERAFEEDS(m_stick);

 cameraFeeds->init();

 }

ELC-SanJose-0324-28 Copyright 2015, The PTR Group, Inc.

Example WPILib Robot Program #3

 void OperatorControl() override {
 int32_t encoderValue = 0;
 while (IsOperatorControl() && IsEnabled()) {

 robotDrive->MecanumDrive_Cartesian(m_stick->GetX(),
 m_stick->GetY(), m_stick->GetZ());
 cameraFeeds->run();
 encoderValue = omniWheel->GetRaw();
 if (m_stick->GetRawButton(3)) {
 printf("Encoder Value = %d\n", encoderValue);
 }

 if (m_stick->GetRawButton(4)) {
 omniWheel->Reset();
 encoderValue = omniWheel->GetRaw();
 printf("Encoder Value = %d\n", encoderValue);
 }

 }
 // stop image acquisition
 cameraFeeds->end();
 }
};

START_ROBOT_CLASS(IntermediateVisionRobot);

ELC-SanJose-0324-29 Copyright 2015, The PTR Group, Inc.

Driver Station (WinDoze Only)

ELC-SanJose-0324-30 Copyright 2015, The PTR Group, Inc.

Summary

The new control system is working pretty well at
this point

The students are starting to develop in Linux for Java
and C/C++

The robot simulator *only* runs on Linux

Expanded use of CAN bus give the students real-
world control experience

Sensors via I2C and SPI as well

New motor controllers are smaller and easier to
work with than previous versions

WPILib simplifies most of the effort to control
various robot functions

Check out US FIRST website for teams near you

