
Participating in Open Source

Tim Bird
Chair, Architecture Group

of the CE Linux Forum



Overview
• Goal is to encourage you to participate in 

Open Source
• How to participate

• Procedures and behaviours

• Why participate
• Reasons to participate



“Community Effect”
• The “Community Effect” is the result from 

having multiple people evaluate and use the 
code.

• “Community Effect” is main reason for 
success of open source.

• Almost all guidelines for participating are 
meant to make it easier for other developers 
to evaluate and use your code



Guidelines for Participation
• Two major categories of guidelines:

– Mechanics – style, formatting, transmission, etc.
– Persuasion – convincing others of the value of 

your code



Mechanics of Participation
• Keep current
• Make sure code style is good
• Use correct patch format
• Submit to correct place
• Use correct e-mail format
• Resources for formatting and conventions



Keeping Up To Date
• Keeping current is critical

– If patches are not current, number of people who will 
use them is very small

– Result is NO community effect
– Kernel moves fastest – is project with biggest problem

• Is difficult challenge for embedded developers
– CE product teams tend to “freeze” their kernel version
– Many developers are still using 2.4.xx kernels

• Common solution is for a platform team to keep 
current, while product teams stay with older kernel 
through their development cycle



Coding Style
• See Documentation/CodingStyle
• Overview

– Brace placement
– Whitespace (use tabs = 8 chars)

• But, lines must be less than 80 chars!
– Variable and function naming
– Use of goto for error handling
– Comment style
– Avoidance of conditional (#ifdefs)

• Best thing is to look at existing code!



Brace Placement
if (conditional) {

statements;

} else {

statements;

}

<function qualifiers> function(args)
{

statements;
}



Variable and Function Names
• Examples of bad variable names:

– ThisVariableNameIsReallyTooLong
– tshrt

• Use underscores to separate words
– e.g. disk_count

• Should be descriptive:
– “foo” is bad
– “i” and “tmp” are acceptable with limited scope

• Variables are nouns, function names usually have a verb 
phrase:
– disk_count and get_free_space()

• No Hungarian notation



Use “goto” for Error Handling
function () {

item1 = allocate();

if (error) {

goto error_out;

}

item2 = allocate();

if (error) {

goto free1_error_out;

}

item3 = allocate();

if (error) {

goto free2_error_out;

}

/* more stuff */

free2_error_out:

free(item2);

free1_error_out:

free(item1);

error_out:

return error;

}



Correct Patch Format
• Use “diff –pruN linux-2.x.x.orig linux-new”
• Make patch from one level above kernel 

source directory
• Make patch between full original tree and 

modified tree
• Make sure to omit generated files

– Use “-X dontdiff”, or better yet, put your build 
files somewhere outside source tree (use 
KBUILD_OUTPUT)



Submit To Correct Place
• Check MAINTAINERS file
• For CPU architecture sites, see:

– http://tree.celinuxforum.org/CelfPubWiki/LinuxKernelResources

• If in doubt, ask where to submit on Linux 
Kernel Mailing List (LKML)
– linux-kernel@vger.kernel.org

• If no one knows, submit patch to LKML



Use Correct E-mail Style
• Subject line:

– [PATCH x/y] <one-line summary>
• Description

– Include explanation of reason for change!
• Patch itself, inline in message body

– Don’t use attachment
– Make sure your mailer doesn’t word-wrap
– Kernel developers want to be able to quote 

plaintext



Resources For Help with Mechanics
• The CE Linux Forum Patch Howto

– http://tree.celinuxforum.org/CelfPubWiki/PatchSubmis
sionHowto

• Kernel source tree docs:
– Documentation/CodingStyle
– Documentation/SubmittingPatches.

• Andrew Morton’s “perfect patch” guidelines:
– http://www.zip.com.au/~akpm/linux/patches/stuff/tpp.txt

• Jeff Garzik’s guidelines:
– http://linux.yyz.us/patch-format.html



Persuading Other Developers
• Start with explanation of problem
• Make sure code is as general as possible
• Listen carefully to criticism

– Try to resolve issues as quickly as possible
• BE PERSISTENT!!!!



Explain Your Problem
• Explain your requirement (power 

management, bootup time, size, etc.)
• Other developers need to understand WHY 

you want this change
• Sometimes, other developers will suggest a 

better solution to your problem
• Even if your patch is not accepted, you have 

communicated a need (which might get 
solved in the future)



Generalizing the code
• Try to make feature useful for:

– Other CPU architectures
– Desktop and server developers

• This can be costly
– Don’t overdo it
– It is better to submit a specific patch, and get 

feedback, then to wait forever
• “Perfect” is the enemy of “good enough”



Persistence
• Submit your change
• If no answer, submit it again
• Even experienced kernel developers must 

submit multiple times
• Listen to feedback

– Try to understand and address all feedback
– Sometimes, feedback is very terse (brief)



Miscellaneous Advice
• Start small

– There’s a lot of process here
– Try to separate learning the process from 

dealing with technical issues
– Start with a small bugfix

• Submit early
– Avoid investing heavily in code that may not be 

accepted into mainline



Reasons to Participate
• Strategic – Long term industry benefits

– Build ecosystem
– Increase size of commoditized portion of 

software stack in products
• Decrease overall software cost in product

– Increased control of software in products
• Tactical – Short term, direct benefits
• Moral – Give back to community



Reason to Publish

Note that the GPL License gives you a legal
obligation only to publish, not to participate in
the community



Ecosystem Thought Exercise



Magic Bowl Game
• Rules:

– Each person starts with 100,000 won
– On each round, any person may put some 

money in the bowl
– At end of round, everyone in room receives 1/3 

the amount of money in the bowl
– Person with most money at end of game wins



Strategies for Game
A – Let others give, and only take for yourself
B – Give lots and hope others give also
C – Agree on amount to give, or somehow 

enforce giving



Observations
• Game models “community effect”
• Fraction received is lower in embedded 

community, because of fragmentation
• If not enough players, and fraction is too 

low, it is not worth putting money in bowl
– e.g. 2 players, and only get 1/3 of money

• Difficult to convince management of 
strategies B or C



Need to recognize selfish reasons 
to participate in Open Source



Other Reasons to Participate
• Other people will:

– Test your code
– Fix bugs in your code
– Make improvements and extensions

• Or at least suggest them

– Maintain your code
• This directly improves your quality and 

decreases your costs.



Benefit Examples
• Testing and Bugfixes

– Printk-times patch was tested by other kernel 
developers, with obscure SCSI options, and a 
bug was found

– Testing wouldn’t have happened in forum
– I received patch with actual fix, not just a bug 

report



Benefit Examples (cont.)
• Improvements

– Preset-LPJ patch was “taken over” by another 
developer, who improved it for fun

– 3 or 4 people made suggestions and 
improvements

• Restructured how option was specified
• Printed value so configuration was easier
• Added to kernel documentation, improved 

configuration help text
• Fixed race condition



Benefit Examples (cont.)
• Maintenance

– Preset-LPJ patch modified code that had not 
changed in years

– Didn’t appear to be maintenance problem
– A few weeks after patch was accepted, the code 

was moved and changed by another developer
– CELF group did not have to do anything!



Fun and skills
• Other benefits – hard to measure

– It’s fun!!
– It builds skills

• Communicating interactively with very good 
engineers helps build your engineering skills

• It’s good to hear what you are doing wrong, even if 
it is painful



Role of CE Linux Forum
• Forum exists to help build ecosystem

– We want to create the “Magic Bowl”
– CELF tries to build community for CE engineers
– Try to help companies find others interested in their 

features
– Try to help build bridge from members to community
– Try to reduce fragmentation (and thus increase 

“community effect”) for embedded space.



Why Participate?

You will be better

Your company will benefit

The world will be a better place



Thanks


