

The international effort to establish OSBL of cyber security for IACS

Kento Yoshida, Renesas Electronics Corporation, Security working group chair of the CIP project @OSS/ELC EU, Oct. 28, 2020

The CIP project and security working group

What is the "CIP" project

To establish a "base layer" of industrial-grade tooling

using the Linux kernel and other open source projects

The key challenges

Apply IoT concepts to industrial systems.

 Ensure quality and longevity of products.

Keep millions of connected systems secure.

Industrial grade

- Reliability
- Functional Safety
- Real-time capabilities

Sustainability

- Product life-cycles of decades
- Backwards compatibility
- Standards

Security

- Security & vunerability managment
- Firmware updates
- Minimize risk of regressions

What is "OSBL"

Sustainability

Security

company-specific middleware and applications

additional packages (hundreds)

CIP Core packages (tens)

CIP kernel (10+ years maintenance, based on LTS kernels)

open source base layer (OSBL)

Collaborative development with other OSS projects

Scope of activities

On-device software stack

Product development and maintenance

IEC 62443 certification

Growing threats of cyber-attacks

Targets have been changed to control systems

New shape of industry

Be standard, be open for cyber security in industry 4.0

Features:

- Evolving continuously without perfection
- Realize new functions by connecting
- Geographically distributed

Connected World

Smart Products

Smart

Factory

Advances in cyber security

Framework for Improving Critical Infrastructure Cybersecurity version 1.1, issued April 16, 2018

The EU Cybersecurity Act was published on June 7, 2019.

A new Era dawns on ENISA

Baseline for Classified Protection of Cybersecurity, GB/T 22239-2019, effective on December 1, 2019

IoT Security Guideline, issued July 2016

Why IEC 62443

IEC 62443 series are integrated cyber security standards

Linux is acting on many components for IACS

IEC 62443 Part 4

IEC 62443-4-1: secure product development lifecycle requirements

IEC 62443-4-2: technical security requirements for IACS components

Target devices, level: Embedded and network device, level-3

Structure for IEC 62443 certification

Activity updates

Security working group's mission and goal

Provide OSBL compliant with IEC 62443 certification

progress of the CIP assessment for IEC 62443 part 4

Completed the gap assessment for IEC 62443-4-1, and started the gap assessment for IEC 62443-4-2

Key challenges to meet IEC 62443-4-1 requirements

Needed special consideration caused not being a product

Development environment security	Following secure design principles	Defence in depth measures	Security implementation review	Defining Threat Model
In OSS development, many developers contribute, making sure all stages of development are secured is the challenge	OSS components are designed by many people and organizations, ensuring secure design is challenging	Ensuring defence in depth measures will be supported by environment where product is deployed is bit challenging	Reviewing all changes or implementation to confirm security measures is challenging	CIP being a platform poses challenge to define Threat Model since it's boundaries are not known

Approach to address key challenges

To achieve as much support as possible as a platform

Development environment security	Following secure design principles	Defence in depth measures	Security implementation review	Defining Threat Model
 Re-use existing OSS infrastructure such as combination or private and public repos Exploit merge feature to control software modifications 	 CIP plans to document how to protect open interfaces, restricted access based on roles Few secure design principles depend upon type of product and it's use cases 	 The overall objective is to reduce attack surfaces Document general measures for defence in depth Product specific measures have to be taken by product suppliers 	 CIP team reviews each security fix before applying to CIP Plans to closely track CVEs of critical issues and regularly release security fixes 	It is planned to define a generic threat model to meet this requirement

Preparing user friendly documents now

Documents compliant with IEC 62443-4-1

User Manual

- How to build CIP kernel and core packages
- Configuration

Security Capabilities

- List of all security packages to meet IEC 62443-4-2 security features requirements
- details of security features which are supported by security packages

development process documents

- Version controlling
- Review policy/cycle
- Records

Can be reused by user certification

Essential packages to meet IEC 62443-4-2

Started the gap assessment of security packages

Selected package examples:

FR 1 – Identification and authentication control (IAC)

shadow, pam, openssl, openssh, fail2ban

FR 2 – Use control (UC)

acl, audit, syslog-ng, chrony

FR 3 – System integrity (SI)

openssl, aide

FR 4 – Data confidentiality (DC)

openssl, util-linux(ipcrm, ipcs), shred

FR 5 – Restricted data flow (RDF)

_

FR 6 – Timely response to events (TRE)

acl, audit, syslog-ng, bro

FR 7 – Resource availability (RA)

nftables

Considering > Packaging > Testing

To close

The backbone of CIP are the member companies

Join us

CIP for sustainable Smart Cities with Open Source Software

Contact information and Resources

- To get latest information:
 - Contact to our mailing list: <u>cip-dev@lists.cip-project.org</u>
- Other resources:
 - Twitter: @cip_project
 - CIP Web Site: https://www.cip-project.org
 - CIP wiki: https://wiki.linuxfoundation.org/civilinfrastructureplatform/
- Upcoming session
 - CIP mini-summit, Friday, Oct. 30, 11:00 GMT: https://sched.co/eDiQ

Thanks you!

