
<security class> <the title of the document> yyyy-mm-dd 1

<security class> <the title of the document> yyyy-mm-dd 2

1. Identify obstacles to mainlining

2. ???

3. Profit! Overcome Obstacles

<security class> <the title of the document> yyyy-mm-dd 3

Identifying obstacles

Survey

Describing obstacles

Observed

Overcoming obstacles

Best Practices

Incentives (Profit!)

<security class> <the title of the document> yyyy-mm-dd 4

<security class> <the title of the document> yyyy-mm-dd 5

A side track on philosophy…

Survey

Some quantifiable data (on perceived issues)

Observed obstacles

<security class> <the title of the document> yyyy-mm-dd 6

Anna Karenina Principle

"Happy families are all alike; every unhappy family is

unhappy in its own way"
There are lots of ways to fail, but only a few ways to succeed

Yogi Bera (American baseball player, philosopher)

“If people don’t want to come out to the ballpark, nobody’s

going to stop them.”
Motivation is a key element

<security class> <the title of the document> yyyy-mm-dd 7

Conducted an online survey in September 2014

Goal was to find qualified kernel developers, who do

NOT submit patches upstream

And determine “why not?”

<security class> <the title of the document> yyyy-mm-dd 8

Top obstacles:

<security class> <the title of the document> yyyy-mm-dd 9

Developer motivation:
It is important to submit change upstream: 92%

I would like to submit changes upstream: 91%

Management motivation:
Management doesn’t approve: 21%

Employer doesn’t provide time: 40%

Interesting non-issues:

English not good enough: 9%

Not my responsibility: 6%

Company process too hard: 26%

<security class> <the title of the document> yyyy-mm-dd 10

Referring to the company approval process: “It can

take weeks or months to get a commit out for

contribution”

“[We] mainly work on older kernels with our supplier’s

modifications”

“It is not really clear what direction a newbie should

follow after… the first few patches…”

“Drop the hard words/language on LKML…”

<security class> <the title of the document> yyyy-mm-dd 11

Version gap (working on older kernel)

Perceived difficulty

Low-quality or specialized code

Dependency on non-mainlined code

Not enough time

<security class> <the title of the document> yyyy-mm-dd 12

<security class> <the title of the document> yyyy-mm-dd 13

Many companies use a vendor tree

Particularly true for products with Android

Are locked in because of processor or SOC selection

Some amount of patches on top of vanilla

Development/Testing/Release schedules causes

delay in kernel version

<security class> <the title of the document> yyyy-mm-dd 14

Delta between Sony Mobile and mainline

Sony mobile dependent on upstream supplier for Linux

version (3.4 in this case)

Lots of patches between Sony tree and mainline

•

•

•

<security class> <the title of the document> yyyy-mm-dd 15

Process is cumbersome if you are not familiar

List of requirements for a contribution is long

SubmittingPatches, SubmitChecklist, CodingStyle
Good, but don’t cover a variety of social issues

Getting anything wrong can result in failure
Lots of details which maintainers take for granted

Not as strict as it used to be, and there are now tools to

assist (e.g. checkpatch.pl)

Cause of strictness is maintainer overload – don’t have time

for malformed contributions
Silly mistakes is the first filter

<security class> <the title of the document> yyyy-mm-dd 16

Part-time contributions

Switching cost of juggling between contributing and product

development is high
Similar to high-latency scheduling – results in overall poor performance

Not doing full-time contributing means that proficiency in

open source methods is developed slowly

Can result in bad response time to provided feedback

Classic error:

Working on a large patch in isolation

Attempt to mainline and find that major changes are needed

Results in mantra: “release early and often”

Original development strategy made it hard

<security class> <the title of the document> yyyy-mm-dd 17

Low-quality

Workarounds and quick hacks

Specialized code

Not generalized for other use cases

Sometimes, there are no frameworks, or the

framework is immature

E.g. NFC support for Android

Assumption by developer (probably correct) that

refactoring of submitted code or even refactoring of

upstream code is required to accept the change in

mainline

<security class> <the title of the document> yyyy-mm-dd 18

Modifications to drivers and systems that are not

upstream

Bugfixes and workarounds for code not upstream

It’s unclear where to send fixes
If it’s an IP block in an SOC, who should get the fixes?

SOC vendor?, IP block creator?

Example: bugfixes for synaptics touchscreen driver

Long delays getting synaptics driver upstream

Impractical, and low motivation to do mainlining in place of

hardware supplier

<security class> <the title of the document> yyyy-mm-dd 19

Not enough time provided by management

Product teams focused on tight delivery deadlines

Causes focus on “good enough” solutions

Not unique to open source software

No time to respond to change requests

I refer to this as the “product treadmill”

Mainline versions are independent of any notion of

product release dates

Mainline acceptance happens when it happens, not based

on your need

<security class> <the title of the document> yyyy-mm-dd 20

Required expertise is very high (and increasing)

This is true for core systems, but not drivers

Proxy problem – someone other than author is contributing

the code (will be discussed later)

Internal Linux churn

Linux has no ABI or even stable API internally

This is a root cause of version gap issues

Specialized code (often hacks)

Code for just one hardware or one product release

Attitude that code is “throwaway”, or that code is “good

enough” for one embedded product release

Assumption that reuse is not needed

<security class> <the title of the document> yyyy-mm-dd 21

<security class> <the title of the document> yyyy-mm-dd 22

Solution for version gap:

Get a minimal core of mainline running on your hardware

Have one team working on mainline, while product

engineers work on older kernel (creates the proxy problem,

described later), until you catch up

Solution for product treadmill

Small team dedicated to mainline, off of product treadmill

Solution for perceived difficulty

Internal training, mentors

Use same processes internally as upstream
Avoid re-learning upstream methods

<security class> <the title of the document> yyyy-mm-dd 23

Solution for low-quality code

Quick hacks are sometimes appropriate from a cost/benefit

standpoint

Need to determine whether code should be upstreamed

Measure duration in your internal tree, and re-work hack if

you are carrying it from release to release
Maybe tag such hacks so they can be tracked?

Solution for specialized code

Do better at sourceing
Require mainline Linux drivers from hardware supplier

Actually consider software cost in BOM (I can dream can’t I?)

Only industry working together can work on this

<security class> <the title of the document> yyyy-mm-dd 24

Open-source-facing developers may not be experienced
with the hardware or system that needs to be mainlined

Is when your “proxy” tries to mainline something, and
Doesn’t have in-depth knowledge of change

Can’t answer questions in a timely manner

May not be able to test thoroughly

Is a particular problem in case where the change is too far
from mainline

Upstream has refactored and doesn’t look like your code at all

Details matter (e.g. locking)

Some possible solutions
Proxies mentor original developers to have them mainline the code

Original developers assist proxies in understanding and testing

<security class> <the title of the document> yyyy-mm-dd 25

<security class> <the title of the document> yyyy-mm-dd 26

See Andrew Morton’s ELC 2008 Keynote:
http://elinux.org/Session:kernel.org_development_and_the_embe
dded_world

Industry should have an embedded maintainer

Report problems and requirements upstream

Participate in community forums

Companies should dedicate a few developers separate
from product teams

Develop product on latest mainline kernel, freeze it at
end of product development

My aside: Current nature of Android features and board support
preclude this

Ask the community (Andrew) for help

<security class> <the title of the document> yyyy-mm-dd 27

Don't be arrogant
Don’t assume you know better than community developers

Release early and often
Don’t work in isolation, and then make big changes when
submitting

Do your homework
Check for existing solutions and extend those

Don't add OS abstractions (or, HALS for other OSes)

Write general solutions

Learn community methods

Work with the community
Treat them as equals on your team

<security class> <the title of the document> yyyy-mm-dd 28

Post early and often

Submitting patches
Send changes - can influence direction even if not accepted

No: multi-purpose patches - make each patch small and independent
Make patch serieses bisectable
Follow submission and style rules

Send to correct place: MAINTAINERS, get-maintainer.pl
Listen to reviewers, be polite, don't ignore feedback

Be open to accepting changes
Your code may be re-written or replaced

Coding
Follow the style guidelines
No multi-OS code – no HAL layers, unused parameters
Should generalize existing code instead of create new code, where possible

Don't break APIs to user space
Don't cause regressions

<security class> <the title of the document> yyyy-mm-dd 29

<security class> <the title of the document> yyyy-mm-dd 30

Why study this?

Sony Mobile has 1100 people who have made a patch to

the kernel

We find ourselves applying the same changes over and over

again

Would like to decrease number of kernel developers

by moving stuff to mainline

OR – have them move to different tasks (power

enhancement, performance, etc.)

<security class> <the title of the document> yyyy-mm-dd 31

Reduce maintenance cost

Allows others to maintain and enhance the code

Reduce time to market

Even more important than cost

<security class> <the title of the document> yyyy-mm-dd 32

Improves code quality
You get immediate feedback, even if code is not accepted

It gets more long-term testing

Avoids adopting a competing implementation
Have 3rd parties enhance your implementation rather than
something else

It rewards your developers
They want to contribute, for a variety of reasons

They become better developers through interaction with the
community

Please notice these are selfish reasons
Unselfish reasons are valid also

<security class> <the title of the document> yyyy-mm-dd 33

<security class> <the title of the document> yyyy-mm-dd 34

Work with SOC supplier to reduce version gap

Have a dedicated team that works in open source

Do specific training for:

Better motivation (management training)

Open source methodology and tactics

Consciously work on social element of community

engagement

Work on stuff for others, and they’ll help you

Meet maintainers face-to-face if possible
Conferences are helpful for this

<security class> <the title of the document> yyyy-mm-dd 35

Goal is to methodically analyze problems, and

address them through industry collaboration

Had a meeting yesterday, discussing status of SOC support

in the kernel

Working on white paper describing these issues

Latest work is in categorizing areas with particular

problems getting mainlined

Analyzed the source from 8 phones and 5 SOCs

Trying to find patterns of out-of-tree code

Working on recommendations for CE Workgroup

funding for ideas discussed in project meeting

<security class> <the title of the document> yyyy-mm-dd 36

http://elinux.org/Kernel_Mainlining

http://elinux.org/Kernel_Mainlining

<security class> <the title of the document> yyyy-mm-dd 37

