
Build a Micro HTTP Server
for Embedded System

Connect to devices more easily

Jian-Hong Pan (StarNight)
@ ELCE / OpenIoT Summit Europe 2016

Outline

● History
● HTTP Protocol

○ Header & Body

● The HTTP Server
○ Concurrency
○ CGI & FastCGI
○ Prototype with Python
○ Automation Test
○ Implemented in C

● Micro HTTP Server
on RTOS
○ FreeRTOS
○ Hardware
○ Socket API
○ Select API
○ Assemble Parts

● Demo
○ If the local WiFi is

accessible (XD)

Who am I
潘建宏 / Jian-Hong Pan (StarNight)

I come from Taiwan !

You can find me at ～

http://www.slideshare.net/chienhungpan/
GitHub : starnight
Facebook : Jian-Hong Pan
Email : starnight [AT] g.ncu.edu.tw

Map: https://upload.wikimedia.org/wikipedia/commons/0/06/Taiwan_ROC_political_division_map.svg

Taiwan

Formosa
Main island area:

~35,980km2

History

● It starts from machine controlling which
controls the machine’s motion.

● It is the motor that most be used as an
actuator in the machine controlling.

MechanismMSet Output

Feedback

-

+

distance
velocity
torque
...

error

Motor Controlling ...

Controller M

Feedback
from Motor

error
Motor

rotor position
rotation rate
voltage, current
...

PID
Adaptive
Optimize
...

M
error

Measurement of Motor

● Parameters of a motor may changed due to
the environment: temperature, humidity...,
etc.

● Measure the rotation of the motor:
○ With the encoder which produces square waves.

○ With the sensorless method: the waves of the
phases of motor’s voltage, current or something
else.

● Also for system identification.

Send & Get of the Communication

● In traditional, a protocol over the serial port
is used for communication between the
computer and the controller, measuring
instruments.

● The devices are distributed anywhere and
the serial ports wiring with the central
computer could be a problem.

● Send commands and get values through the
communication over serial ports that may not
as fast as we want.

Communication over Internet

● Linking the devices with the TCP/IP based
internet is possible. It is faster and more
convenient for management.

● Protocol over TCP/IP:
○ MQTT, CoAP ...
○ or just RESTful web API on HTTP
○ Choosing depends on case by case.

PS. Internet may not be the best solution for all
of the cases, but is one of the candidate.

In General

Internet

Device

or

Internet

Gateway

Device #1 Device #2 Device #n

RS232, 485, 422
Bluetooth, Zigbee
Ethernet, WiFi ...

For My Condition

Internet Device

GPIO

PWM
HTTP Server

Communication

ADCController

Full Stack / IoT
 is fancy！！！
I just want to have
an HTTP server on
the embedded
system.

Limitations

● Considering the size and power restrictions, most
embedded devices have limited resources. (MCU level)
○ Less processors: Usually has only one processor, single

thread.

○ Less memory: On-chip RAM < 1MB.

○ Less storage: On-chip flash < 1MB.

○ Lower speed grade: Clock rate < 1GHz.

○ The on chip OS may even not provide process, thread APIs.

● The Apache, NGINX... HTTP server could not be placed
in that restricted environment.

PS. The numbers mentioned above may not be the real
numbers, but they are around that grade levels.

HTTP Server on OSI 7 Layers

Reference: Wiki OSI model https://en.wikipedia.org/wiki/OSI_model

Physical

Data Link

Network

Transport

Session

Presentation

Application

HTTP Sockets

HTML

HTTP Web API

TCP

IP

Link neighbors

Controlled
by

Application

Controlled
by OS

Electrics, Lines

Socket APIs

https://en.wikipedia.org/wiki/OSI_model

RFC 2616 HTTP/1.1
Hypertext Transfer Protocol -- HTTP/1.1

https://tools.ietf.org/html/rfc2616

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

● The HTTP protocol is a request/response protocol.
● A client sends a request to the server in the form of a

request method, URI, and protocol version, followed by
a MIME-like message containing request modifiers,
client information, and possible body content over a
connection with a server.

● The server responds with a status line, including the
message's protocol version and a success or error
code, followed by a MIME-like message containing
server information, entity metainformation, and possible
entity-body content.

Overall Operation

Reference: RFC 2616 1.4 Overall Operation

https://tools.ietf.org/html/rfc2616#section-1.4

HTTP Request

HTTP Response

HTTP Message - Message Types
● HTTP messages consist of requests from client to server and responses

from server to client.

● Request (section 5) and Response (section 6) messages use the generic
message format of RFC 822 [9] for transferring entities (the payload of the
message).

● Both types of message consist of a start-line, zero or more header fields
(also known as "headers"), an empty line (i.e., a line with nothing
preceding the CRLF) indicating the end of the header fields, and possibly a
message-body.

 generic-message = start-line
*(message-header CRLF)
CRLF
[message-body]

start-line = Request-Line | Status-Line
Reference: RFC 2616 4.1 Message Types

https://tools.ietf.org/html/rfc2616#section-4.1

HTTP Message - Message Headers
● HTTP header fields, which include general-header (section 4.5),

request-header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields.

● Each header field consists of a name followed by a colon (":") and the field
value. Field names are case-insensitive. The field value MAY be preceded
by any amount of LWS, though a single SP is preferred.

Reference: RFC 2616 4.2 Message Headers

message-header = field-name ":" [field-value]

field-name = token

field-value = *(field-content | LWS)

field-content = <the OCTETs making up the field-value and
consisting of either *TEXT or combinations of
token, separators, and quoted-string>

https://tools.ietf.org/html/rfc2616#section-4.2

HTTP Message - Message Body

● The message-body (if any) of an HTTP
message is used to carry the entity-body
associated with the request or response.

Reference: RFC 2616 4.3 Message Body

message-body = entity-body
| <entity-body encoded as per
Transfer-Encoding>

https://tools.ietf.org/html/rfc2616#section-4.3

start line → Request-Line

HTTP Request Message Header

empty line

Request

● A request message from a client to a server includes,
within the first line of that message, the method to be
applied to the resource, the identifier of the resource,
and the protocol version in use.

Request = Request-Line
*((general-header
| request-header
| entity-header) CRLF)
CRLF
[message-body]

Reference: RFC 2616 5 Request

https://tools.ietf.org/html/rfc2616#section-5

Request-Line

● The Request-Line begins with a method token, followed
by the Request-URI and the protocol version, and
ending with CRLF. The elements are separated by SP
characters. No CR or LF is allowed except in the final
CRLF sequence.

Request-Line = Method SP Request-URI SP
HTTP-Version CRLF

Reference: RFC 2616 5.1 Request-Line

https://tools.ietf.org/html/rfc2616#section-5.1

Method

● The Method token indicates the method to be performed
on the resource identified by the Request-URI. The
method is case-sensitive.
Method = "OPTIONS"

| "GET"
| "HEAD"
| "POST"
| "PUT"
| "DELETE"
| "TRACE"
| "CONNECT"
| extension-method

Reference: RFC 2616 5.1.1 Method

https://tools.ietf.org/html/rfc2616#section-5.1.1

Request-URI

● The Request-URI is a Uniform Resource Identifier
(section 3.2) and identifies the resource upon which to
apply the request.

Request-URI = "*"
| absoluteURI
| abs_path
| authority

Reference: RFC 2616 5.1.2 Request-URI

https://tools.ietf.org/html/rfc2616#section-5.1.2

Request Header Fields

● The request-header fields allow the client to pass
additional information about the request, and about the
client itself, to the server. These fields act as request
modifiers, with semantics equivalent to the parameters
on a programming language method invocation.
request-header = Accept

| Accept-Charset
| Accept-Encoding
| Accept-Language
| Authorization
| Expect
...

Reference: RFC 2616 5.3 Request Header Fields

https://tools.ietf.org/html/rfc2616#section-5.3

start line → Status-Line

HTTP Response Message Header

empty line

HTTP Response Message Body

Response

● After receiving and interpreting a request message, a
server responds with an HTTP response message.

Response = Status-Line
*((general-header
| response-header
| entity-header) CRLF)
CRLF
[message-body]

Reference: RFC 2616 6 Response

https://tools.ietf.org/html/rfc2616#section-6

Status-Line

● The first line of a Response message is the Status-Line,
consisting of the protocol version followed by a numeric
status code and its associated textual phrase, with each
element separated by SP characters. No CR or LF is
allowed except in the final CRLF sequence.

Status-Line = HTTP-Version SP Status-Code SP
Reason-Phrase CRLF

Reference: RFC 2616 6.1 Status-Line

https://tools.ietf.org/html/rfc2616#section-6.1

Status Code and Reason Phrase
● The Status-Code element is a 3-digit integer result code of the attempt to

understand and satisfy the request. These codes are fully defined in
section 10. The Reason-Phrase is intended to give a short textual
description of the Status-Code.

Reference: RFC 2616 6.1.1 Status Code and Reason Phrase

- 1XX: Informational - Request received, continuing process

- 2XX: Success - The action was successfully received, understood,
and accepted

- 3XX: Redirection - Further action must be taken in order to
complete the request

- 4XX: Client Error - The request contains bad syntax or cannot be
fulfilled

- 5XX: Server Error - The server failed to fulfill an apparently valid
request

https://tools.ietf.org/html/rfc2616#section-6.1.1

Response Header Fields

● The response-header fields allow the server to pass
additional information about the response which cannot
be placed in the Status- Line.

● These header fields give information about the server
and about further access to the resource identified by
the Request-URI.

response-header = Accept-Ranges
| Age
| ETag
| Location
...

Reference: RFC 2616 6.2 Response Header Fields

https://tools.ietf.org/html/rfc2616#section-6.2

Entity

● Request and Response messages MAY
transfer an entity if not otherwise restricted
by the request method or response status
code.

● An entity consists of entity-header fields and
an entity-body, although some responses
will only include the entity-headers.

Reference: RFC 2616 7 Entity

https://tools.ietf.org/html/rfc2616#section-7

Entity Header Fields
● Entity-header fields define metainformation about the entity-body or, if no

body is present, about the resource identified by the request.

● Some of this metainformation is OPTIONAL; some might be REQUIRED
by portions of this specification.

entity-header = Allow
| Content-Language
| Content-Location
| Content-Range
| Expires
| extension-header

| Content-Encoding
| Content-Length
| Content-MD5
| Content-Type
| Last-Modified

extension-header = message-header

Reference: RFC 2616 7.1 Entity Header Fields

https://tools.ietf.org/html/rfc2616#section-7.1

Entity Body

● The entity-body (if any) sent with an HTTP request or
response is in a format and encoding defined by the
entity-header fields.

● An entity-body is only present in a message when a
message-body is present, as described in section 4.3.

● The entity-body is obtained from the message-body by
decoding any Transfer-Encoding that might have been
applied to ensure safe and proper transfer of the
message.

extension-header = message-header

Reference: RFC 2616 7.2 Entity Body

https://tools.ietf.org/html/rfc2616#section-7.2

After Sockets connected

Client HTTP ServerRequest Message:
Request-Line
*((general-header
| request-header
| entity-header) CRLF)
CRLF
[message-body]

Response Message:
Status-Line
*((general-header
| response-header
| entity-header) CRLF)
CRLF
[message-body]

The HTTP Server
Concurrency & Backend

Single Server Thread & Single Client

Client
Socket

Server
Socket

Server
Application

HTTP Server

HTTP Request HTTP Request
Message

HTTP Response
MessageHTTP Response

Client
Socket
Client
Socket

Single Server Thread & Multi-Clients

Client
Sockets

Server
Socket

Server
Application

HTTP Server

HTTP Requests One of HTTP
Request Message

The One of HTTP
Response MessagesThe One of

HTTP Response

Which one should be proccessed first?

Server writes the response to the client socket

Server process the request and build the response

Server reads a request from the client socket

Flow Chart of Server Socket

Client socket sends a request

Server writes finished

I/O Bound

I/O Bound

CPU Bound

HTTP Request Message

HTTP Response Message

I/O Bound

● CPU runs faster than I/O devices. If system
needs the resources of I/O devices, it will be
blocked to wait for the resources.

● If there is only one client socket and request,
it may not be the problem.

● If there are two or more clients and requests
at the same time, the blocked I/O will hang
up the server. Clients may get responses
slowly or even be timeout.

Concurrency

● The server could use the process (fork()) or thread
(pthread library) APIs to serve multiple clients at the
same time.
○ Socket works great in blocking mode.

○ Process or thread APIs must be provided by OS. (Resources
considering.)

○ Overhead of context switching.

● Use I/O Multiplexing & Non-Blocking sockets.
○ It could be used in the single thread situation.

○ Compared with the process and thread, it is less resources
required.

○ No more processes or threads, no context switching.

I/O Multiplexing & Non-Blocking

● select() monitors the sockets’ (fd_set) status flag and
returns the status of all sockets. It exists in most OSes.

● poll() works like select(), but represents in different form
(pollfd).

● epoll() monitors sockets’ status and trigger the related
events. It returns only triggered events array. It has
been implemented since Linux 2.6.

● recv(), send() in non-blocking mode.
● Use fcntl() to set the O_NONBLOCK (non-blocking) flag

of the socket on.

RFC 3857 CGI
The Common Gateway Interface Version 1.1

https://tools.ietf.org/html/rfc3875

https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875

Server Application - CGI

Abstract
The Common Gateway Interface (CGI) is a

simple interface for running external programs,
software or gateways under an information
server in a platform-independent manner.
Currently, the supported information servers
are HTTP servers.

Reference: RFC 3857 Abstract

https://tools.ietf.org/html/rfc3875

Terminology

● 'script'
The software that is invoked by the server according

to this interface. It need not be a standalone program,
but could be a dynamically-loaded or shared library, or
even a subroutine in the server.

● 'meta-variable'
A named parameter which carries information from

the server to the script. It is not necessarily a variable in
the operating system's environment, although that is the
most common implementation.

Reference: RFC 3857 1.4. Terminology

https://tools.ietf.org/html/rfc3875#section-1.4

Steps for CGI

1. Apache HTTP Server receives a request and parse it.
2. The server puts the request header into the

environment variables, then forks to have a child
process which inherits parent's environment variables.

3. The child process executes the CGI script and gets the
request header fields from environment variables, the
request body from STDIN.

4. The Apache HTTP Server will have the response which
is produced and written from the STDOUT of the child
process.

FastCGI
● It is a variation on the earlier CGI.

● Instead of creating a new process for each request, FastCGI uses
persistent processes to handle a series of requests. These
processes are owned by the FastCGI server, not the web server.

● To service an incoming request, the web server sends environment
information and the page request itself to a FastCGI process over a
socket (in the case of local FastCGI processes on the web server) or
TCP connection (for remote FastCGI processes in a server farm).

● Responses are returned from the process to the web server over the
same connection, and the web server subsequently delivers that
response to the end-user.

● The connection may be closed at the end of a response, but both
the web server and the FastCGI service processes persist.

Reference: Wiki FastCGI

https://en.wikipedia.org/wiki/FastCGI

NSAPI

Netscape Server Application Programming Interface
● Applications that use NSAPI are referred to as NSAPI plug-ins.

Each plug-in implements one or more Server Application Functions
(SAFs).

● Unlike CGI programs, NSAPI plug-ins run inside the server
process. Because CGI programs run outside of the server process,
CGI programs are generally slower than NSAPI plug-ins.

● Running outside of the server process can improve server reliability
by isolating potentially buggy applications from the server software
and from each other.

● NSAPI SAFs can be configured to run at different stages of request
processing.

Reference: Wiki NSAPI

https://en.wikipedia.org/wiki/Netscape_Server_Application_Programming_Interface

Micro HTTP Server

● It could work on limited resources embedded system.
● It could process multiple HTTP clients concurrently.
● It parses the HTTP request message and passes the

message to corresponding server application functions
(SAFs) according to the Request-Line. (Like NSAPI)

● The SAFs process with the HTTP request message and
build the HTTP response message.

● The server application functions can collaborate like a
chain. Therefore, each server application function only
does a simple job.

https://github.com/starnight/MicroHttpServer

https://github.com/starnight/MicroHttpServer
https://github.com/starnight/MicroHttpServer

Sequential Diagram

Server Socket Middileware SAFs

Micro HTTP Server

HTTP Request Message

HTTP Response Message

HTTP Request Message

HTTP Response Message

Response

Requests
I/O Multiplexing Model
select() NSAPI like

Dispatch

Sequential Diagram

Server Socket Middileware SAFs

Micro HTTP Server

HTTP Request Message

HTTP Response Message

HTTP Request Message

HTTP Response Message

Response

Requests
I/O Multiplexing Model
select() NSAPI like

Dispatch

Is write state

Server Socket Flow Chart
Start

Have a socket

The socket listens
on designated port

Select ready sockets

Read the socket

Accept a new client socket

Write the HTTP response message

Build the HTTP request message

Process and build the HTTP response
message in server application functions

Close the socket

Is server socket

Not server socket

Is read state

Not read state

Not write state

Is close state

Not close state

For each
ready socket

Sequential Diagram

Server Socket Middileware SAFs

Micro HTTP Server

HTTP Request Message

HTTP Response Message

HTTP Request Message

HTTP Response Message

Response

Requests
I/O Multiplexing Model
select() NSAPI like

Dispatch

There is a static file
matched with URI

There is a route
matched with
method and URI

Middileware - Route Flow Chart

Start

Have an HTTP
request message

1. Distpach and execute
the server application

function of matched route

2. Read the file and
write it into HTTP

response message

3. Make the HTTP
response message as
NOT FOUND message

Return

No matched route

No matched URI

Register routes before the server starts!

Prototype with Python

● The py-version of the repository.
● Python is so convenient to do prototypes.
● Because of that, there is a little different between

Python and C version, and is more simple with I/O
multiplexing and the states of ready sockets in part of
'Server Socket'.

● Both Python and C version's 'Middleware' models are
the same.

● Users only have to register the routes, the server
application functions (SAFs) of the routes and start the
HTTP server.

https://github.com/starnight/MicroHttpServer/blob/master/py-version

Works in Python 3.2 up!

Make sure the encoding
during reading and writing

sockets.

● lib/:
server.py: The Python Version Micro HTTP Server.
middleware.py: The Python Version Micro HTTP
Server middleware.

● static/:
static files: HTML, JS, Images ...

● main.py: The entry point of Python Version Micro HTTP
Server example.

● app.py: The web server application functions of Python
Version Micro HTTP Server example.

Directory Tree in Python Version

Example of Python Version

from lib.server import HTTPServer
from lib.middleware import Routes
import app

server = HTTPServer(port=8000)
routes = Routes()
routes.AddRoute("GET", "/", app.WellcomePage)
routes.AddRoute("GET", "/index.html", app.WellcomePage)
routes.AddRoute("POST", "/fib", app.Fib)

server.RunLoop(routes.Dispatch)

Register the routes

Run the HTTP server
The callback for new request

def WellcomePage(req, res):
'''Default wellcome page which makes
response message.'''
Build HTTP message body
res.Body = "<html><body>Hello!
"
res.Body += "It's {} for now.".format(

datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
res.Body += "</body></html>"

Build HTTP message header
res.Header.append(["Status", "200 OK"])
res.Header.append(

["Content-Type", "text/html; charset=UTF-8;"])

Automation Test

● The sub-directory autotest/ of the repository
● Write a test application client.py which acts

as an HTTP client with the Python unittest
library.

● Have an HTTP client with 4 actions:
Connect, Request with GET method,
Request with POST method, Close.

● Have an unittest class which will execute the
test scenarios.

Test Scenarios

● Only connect and close actions.
● Connect, request GET method with a

specific URI and check the response and
close.

● Connect, request POST method with a
specific URI and check the response and
close.

● Multiple clients request concurrently.
● Request different URIs to make sure the

SAFs work correctly.

Continous Integration

Use Travis CI:
https://travis-ci.org/starnight/MicroHttpServer

Thanks to Travis CI!

https://travis-ci.org/starnight/MicroHttpServer
https://travis-ci.org/starnight/MicroHttpServer

.travis.yml in the repository

● language: Python
● python version: 3.2 ~ 3.5
● before_script:

Build (if needed) and excute Python and
C version Micro HTTP Server in background

● script:
Execute the test application to test the

Python and C version Micro HTTP Server

Micro HTTP Server in C

● The c-version of the repository.
● Also could be test with the automated test application

and integrated with Travis CI.
● The C version is more efficient than the Python version.

(The comparison could be found in the automated test
result.)

● The C version also could be ported on embedded
system.
○ The system must provides socket APIs.
○ The file system is provided for the static files.

https://github.com/starnight/MicroHttpServer/tree/master/c-version

Directory Tree in C Version
● lib/:

server.c & .h: The C Version Micro HTTP Server.
middleware.c & .h: The C Version Micro HTTP
Server middleware.

● static/:
static files: HTML, JS, Images ...

● main.c: The entry point of C Version Micro HTTP Server
example.

● app.c & h: The web server application functions of C
Version Micro HTTP Server example.

● Makefile: The makefile of this example.

Example of C Version
#include "server.h"
#include "middleware.h"
#include "app.h"

/* The HTTP server of this process. */
HTTPServer srv;

int main(void) {
 /* Register the routes. */
 AddRoute(HTTP_GET, "/index.html", HelloPage);
 AddRoute(HTTP_GET, "/", HelloPage);
 AddRoute(HTTP_POST, "/fib", Fib);
 /* Initial the HTTP server and make it listening on MHS_PORT. */
 HTTPServerInit(&srv, MHS_PORT);
 /* Run the HTTP server forever. */
 /* Run the dispatch callback if there is a new request */
 HTTPServerRunLoop(&srv, Dispatch);
 return 0; }

#include <string.h>
#include <stdlib.h>
#include "app.h"

void HelloPage(HTTPReqMessage *req, HTTPResMessage *res) {
 int n, i = 0, j;
 char *p;
 char header[] = "HTTP/1.1 200 OK\r\nConnection: close\r\n"
 "Content-Type: text/html; charset=UTF-8\r\n\r\n";
 char body[] = "<html><body>Hello!
許功蓋
</body></html>";

 /* Build header. */
 p = (char *)res->_buf;
 n = strlen(header);
 memcpy(p, header, n);
 p += n; i += n;
 /* Build body. */
 n = strlen(body);
 memcpy(p, body, n);
 p += n; i += n;
 /* Set the length of the HTTP response message. */
 res->_index = i; }

Micro HTTP Server C APIs
GitHub repository Wiki

https://github.com/starnight/MicroHttpServer/wiki/C-API

https://github.com/starnight/MicroHttpServer/wiki/C-API
https://github.com/starnight/MicroHttpServer/wiki/C-API

Ported on STM32F4-Discovery
with FreeRTOS for Example

Micro HTTP Server on
Embedded System

FreeRTOS on STM32F4-Discovery

● The Micro HTTP Server needs the socket
APIs which provides by the OS. Therefore,
we need an OS on the development board.

● Putting a heavy Linux OS on the limited
resource board may not be a good idea.
Having a light weight RTOS will be a better
solution.

● Considering finding the documents and
usability, FreeRTOS is chosen because of
the mentioned above.

FreeRTOS is Free
which means Freedom

The License could be found at
http://www.freertos.org/license.txt

http://www.freertos.org/license.txt
http://www.freertos.org/license.txt

FreeRTOS

● Features Overview
○ http://www.freertos.org/FreeRTOS_Features.html

● FreeRTOS introduced in Wiki of CSIE, NCKU
○ http://wiki.csie.ncku.edu.tw/embedded/freertos

● RTOS objects
○ tasks, queues, semaphores, software timers, mutexes

and event groups

● Pure FreeRTOS does not provide socket
related APIs!!! T^T

http://www.freertos.org/index.html
http://www.freertos.org/index.html
http://www.freertos.org/FreeRTOS_Features.html
http://www.freertos.org/FreeRTOS_Features.html
http://wiki.csie.ncku.edu.tw/embedded/freertos
http://wiki.csie.ncku.edu.tw/embedded/freertos

● STM32F4-Discovery as mainboard
○ STM32F407VG: Cortex-M4
○ USART × 2:

■ 1 for connecting to WiFi module
■ 1 for serial console

○ 4 LEDs for demo

● ESP01 as WiFi module
○ ESP8266 series

■ UART connecting to STM32F4-Discovery

Hardware

No general internet
connection (including Wifi)
on borad. So ...

STM32F4-
Discovery

ESP01

UART
PC6 USART6_TX
PC7 USART6_RX

RX
TX

PC

PA2 USART2_TX
PA3 USART2_RX

UART

Console

Communication Wiring

Power
& ST-LINK

STM32F4-Discovery

USB to Serial ESP01

HTTP Server on STM32F4-Discovery

Session

Presentation

Application

Socket
provided by

OS

HTTP

HTML

HTTP Web API

Physical

Data Link

Network

Transport

UART

Serial Lines

Socket APIs

STM32F4-Discovery

ESP01 WiFi module

Socket
to

USART

Serial Device Driver

Socket API

● Data Types:
○ socket, sockaddr_in

● Constant Flags
● Initial socket:

○ socket()
○ bind()

● Server’s works:
○ listen()
○ accept()

● I/O:
○ send()
○ recv()

● Release I/O:
○ shutdown()
○ close()

● Manipulate I/O
○ setsockopt()
○ fcntl()

Select API

● Data types:
○ fd_set
○ struct timeval

● I/O Multiplexing:
○ select()
○ FD_ZERO()
○ FD_SET()
○ FD_CLR()
○ FD_ISSET()

We also need
ESP8266 & serial drivers
which communicates with

ESP01 through UART!

The protocol of the
communication between
the MCU and ESP01 is

AT commands!

AT Commands of ESP01
https://cdn.sparkfun.com/assets/learn_tutorials/4/0/3/4A-ES
P8266__AT_Instruction_Set__EN_v0.30.pdf
● AT+CWJAP: Connect to AP
● AT+CIFSR: Get local IP address
● AT+CIPMUX: Enable multiple connections
● AT+CIPSERVER: Configure as TCP server
● AT+CIPSEND: Send data
● AT+CIPCLOSE: Close TCP or UDP connection
● [num],CONNECT: A new client connected (Not listed)
● +IPD: Receive network data

https://cdn.sparkfun.com/assets/learn_tutorials/4/0/3/4A-ESP8266__AT_Instruction_Set__EN_v0.30.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/4/0/3/4A-ESP8266__AT_Instruction_Set__EN_v0.30.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/4/0/3/4A-ESP8266__AT_Instruction_Set__EN_v0.30.pdf

Micro HTTP Server on FreeRTOS

STM32F4-Discovery connected with ESP01

FreeRTOS USART Driver

ESP8266 Driver acts as NIC

Socket & Select APIs

Micro HTTP Server

Yellow blocks need to be implemented

就自幹吧！

Principles of Implementation

1. Implement the used APIs as much as
possible!

2. Mocking may be used if the function is
not important! → To reduce the complexity

Socket & Select APIs’ Header Files

Refer to and copy Linux header files directly.

To make it simple, merge the variety header
files which are included and rewrite them into
several files.

Thanks to Open Source!!!

Reference Serial Drivers of Linux

Reference: Serial Drivers http://www.linux.it/~rubini/docs/serial/serial.html

http://www.linux.it/~rubini/docs/serial/serial.html

Data Flow and Function Calls

Micro HTTP
Server

Socket

ESP8266
Driver

USART

Hardware

send()

SendSocket()

USART_Send()

USART_SendByte()

TX/RX Lines

recv()

RecvSocket()

__rxBuf

clisock.rxQueue

Interrupt_Handler

USART_ReadByte()
USART_Read()

xQueueReceive()
GetClientRequest()

Function Call Data Flow

ESP8266 Driver

● Initial the USART channel
● Makes ESP01 as a network interface

○ Translates the system calls to AT commands

● Manage socket resources
○ The file descriptors of sockets

● USART channel mutex
○ Both the vESP8266RTask and vESP8266TTask communicate

with ESP01 through the same USART channel

● Join an access point

ESP8266 Driver Cont.

● vESP8266RTask
○ A persistent task parses the active requests from ESP01

(connect for accept, the requests from client’s sockets)

● vESP8266TTask
○ A persistent task deals the command going to be sent to

ESP01 (socket send, socket close)

● Socket ready to read
○ Check the socket is ready to be read for I/O multiplexing to

monitor the socket’s state

● Socket ready to write
○ Check the socket is ready to be written for I/O multiplexing to

monitor the socket’s state

Flow of vESP8266RTask

Enable USART RX pipe

Try to take USART mutex

Give USART mutex

Get ESP8266 request

Task delay and block

Start
Check USART RX
pipe is readable

Take mutex failed

Take mutex

More to read

No more to read

Task Delay

Flow of vESP8266TTask

Try to take USART mutex

Task Suspend

Task delay and block

Start

Take mutex failed

Take mutex

SEND CLOSE

Send Socket Close Socket

ESP8266
Command

Give USART mutex

Select System Call
int select(int nfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

select() and pselect() allow a program to monitor multiple
file descriptors, waiting until one or more of the file
descriptors become "ready" for some class of I/O operation
(e.g., input possible). A file descriptor is considered ready
if it is possible to perform a corresponding I/O operation
(e.g., read(2) without blocking, or a sufficiently small
write(2)).

Reference: Linux Programmer's Manual SELECT(2)

http://man7.org/linux/man-pages/man2/select.2.html

Select System Call Cont.
● readfds will be watched to see if characters become

available for reading (more precisely, to see if a read will
not block; in particular, a file descriptor is also ready on
end-of-file).

● writefds will be watched to see if space is available for
write (though a large write may still block).

● exceptfds will be watched for exceptions.
● nfds is the highest-numbered file descriptor in any of the

three sets, plus 1.
● timeout argument specifies the interval that select()

should block waiting for a file descriptor to become ready.
Reference: Linux Programmer's Manual SELECT(2)

http://man7.org/linux/man-pages/man2/select.2.html

Select System Call Cont.
● On success, select() and pselect() return the number of

file descriptors contained in the three returned
descriptor sets (that is, the total number of bits that are
set in readfds, writefds, exceptfds) which may be zero if
the timeout expires before anything interesting happens.

● On error, -1 is returned, and errno is set to indicate the
error; the file descriptor sets are unmodified, and
timeout becomes undefined.

Reference: Linux Programmer's Manual SELECT(2)

http://man7.org/linux/man-pages/man2/select.2.html

fd_set
Linux/include/uapi/linux/posix_types.h
typedef struct {

unsigned long fds_bits[__FD_SETSIZE /
(8 * sizeof(long))];

} __kernel_fd_set;

Linux/include/linux/types.h
typedef __kernel_fd_set fd_set;

=> Each bit of fd_set corresponds to one file descriptor in
order.

Bits Array fd=0 fd=1 fd=2 fd=3 fd=4 fd=5 fd=6 ...

I make it as the data type
of uint64_t !!!
typedef uint64_t fd_set;

http://lxr.free-electrons.com/source/include/uapi/linux/posix_types.h#L26
http://lxr.free-electrons.com/source/include/uapi/linux/posix_types.h#L26
http://lxr.free-electrons.com/source/include/linux/types.h#L14
http://lxr.free-electrons.com/source/include/linux/types.h#L14

Select System Call Implementation

Go through each
socket whose file

descriptor fd
is < nfds

Start

The __readfds
is not NULL and
the current fd is

interested

Check the fd is
ready to be read

Increase
count

Clear the
bit of the fd

The __writefds is
not NULL and the

current fd is
interested

Check the fd is
ready to be written

Increase
count

Clear the
bit of the fd

The __exceptfds
is not NULL and
the current fd is

interested

It is a dummy
function

Return
count

read fd_set
__readfds

write fd_set
__writefds

except fd_set
__exceptfds

Less

Not less

Yes

Not

Yes

Not

Yes Not Yes Not
Dummy!

Mocked！！

Assemble Parts Together

Overall Flow Diagram

Start

Setup LEDs
and USART2
peripherals

Initial
ESP8266

Driver

Create Micro
HTTP Server

task

FreeRTOS task
scheduler

Setup USART6
Create tasks:
 vESP8266RTask
 vESP8266TTask

Start

Check
ESP8266

state

Get
interface IP

Add
routes

Initial Micro
HTTP Server

Run Micro
HTTP Server

Booting Flow Micro HTTP Server Task

Linked

Not
linked

Demo

● RFC 2616 HTTP 1.1 https://tools.ietf.org/html/rfc2616

● RFC 3875 CGI https://tools.ietf.org/html/rfc3875

● FastCGI https://en.wikipedia.org/wiki/FastCGI

● NSAPI
https://en.wikipedia.org/wiki/Netscape_Server_Application_Progra
mming_Interface

● Django & Twisted by Amber Brown @ PyCon Taiwan 2016
https://www.youtube.com/watch?v=4b3rKZTW3WA

● eserv https://code.google.com/archive/p/eserv/source

● tinyhttpd
http://tinyhttpd.cvs.sourceforge.net/viewvc/tinyhttpd/tinyhttpd/

● GNU Libmicrohttpd https://www.gnu.org/software/libmicrohttpd/

Reference

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3875
https://en.wikipedia.org/wiki/FastCGI
https://en.wikipedia.org/wiki/Netscape_Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Netscape_Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Netscape_Server_Application_Programming_Interface
https://www.youtube.com/watch?v=4b3rKZTW3WA
https://www.youtube.com/watch?v=4b3rKZTW3WA
https://code.google.com/archive/p/eserv/source
http://tinyhttpd.cvs.sourceforge.net/viewvc/tinyhttpd/tinyhttpd/
http://tinyhttpd.cvs.sourceforge.net/viewvc/tinyhttpd/tinyhttpd/
https://www.gnu.org/software/libmicrohttpd/

Thank you ~
and

Q & A

