IOTIVITY AND
EMBEDDED LINUX
SUPPORT

Kishen Maloor
Intel Open Source Technology Center

loTivity

® OPEN THE
o ® INTERCONNECT I LINU
. CONSORTIUM™ FOUNDATION

Outline

- Open Interconnect Consortium and loTivity
- Software development challenges in embedded
- Yocto Project and how it addresses these challenges

- Key takeaway: loTivity over Yocto makes an ideal
platform for developing embedded loT applications

- This is not a tutorial on Yocto

Open Interconnect Consortium

- Industry group with several member companies
- Interoperability standards for loT devices
- loTivity: Reference implementation

B
What is loTivity?

- Internet Of Things
- Interconnecting physical objects with the digital world
- Widespread deployment of Low Power Embedded computers

- loTivity
- High-level APIs for loT Application Developers
- Exposing “things” as resources

- Discovering and manipulating resources over multiple
network transports

- Utilize emerging loT technologies

Simple Use Cases

v

Smartphone

Turn Lights ON

Light bulbs with BLE radios

75F

- Notify Current Setting

AN

Digital
Thermostat

B
loTivity Software Stack

CoAP

coap://<device-
address>/temperature

loTivity Stack on an - Thermostat

edge device

User space

Kernel space

Emerging Open loT Protocols

- 6LOWPAN: IPv6 over Low Power Wireless Personal
Area Networks

- Bluetooth Smart
- IPSP

- RPL: Routing over Low Power and Lossy Networks

- New RFCs being published followed by prototype
Linux implementations

- Growing influence of Linux in loT

S
Challenges

- Heterogeneous nature of targets, CPUs, kernels

- loTivity needs to be ported to each and maintained
separately. Not easily scalable.

- loT rapidly evolving with new protocols

- Need modular approach to quickly plug-in new loT
protocol implementations

Challenges

- Embedded development now becoming mainstream
with loT

- Need cohesive software development infrastructure that
is uniform across multiple loT targets

- These challenges are addressed by the Yocto
Project...

Yocto Project

- http://www.yoctoproject.org/
- Hosted at the Linux Foundation
- Create customized OS images for embedded targets
- Ready-to-use BSPs for multiple platforms

- Layer-based flexible build architecture
- Focus on configurability and reuse
- Support for major CPU architectures

Yocto Recipes

- Spec files with .bb extension

- Represents a "meta package”

- Define contents of binary and development packages
- Dependency relationships between recipes

- Versioning

- Interfaces for fetch, patch, configure, compile, install
steps

- Architecture specific switches

S
Software Layers

- Related collections of recipes to build applications
and middleware

- Customize build and configuration of BSP and other
software layers
- Recipes with .bbappend extension

- Package up loTivity and dependencies in a target
agnostic way

D
Yocto Build Workflow

Target
Machine
Definition OS Image
: : Binary And
BitBake Build
Metadata .
el Recipes For Task Executor I Development
And Software Packages

LN Com ponents Package Feeds

Configuration

meta-oic Software Layer

- git://git.yoctoproject.org/meta-oic

» Resource clients and servers
 Third-party protocol plug-ins

APIs

Service Model and Plug-in Manager
Resource Model

Base Framework

Kernel Configuration
Protocol implementations
Middleware Updates

Dependencies

Kernel Builds In Yocto

- linux-yocto
- Upstream kernel based trees maintained by the Yocto Project
- Platform specific branches
- Recipes for respective kernels

- linux-yocto-custom
- Build any git-based kernel

Adding Kernel Features

- Create a linux-yocto.bbappend recipe to customize
the kernel

- Resides in your layer and distributable
- Patches

- Configuration Fragments
- Create a .cfg and place in your kernel .bbappend

#Enable features for loTivity
CONFIG_BT_6LOWPAN=y
CONFIG_IEEE802154=y
CONFIG_IEEE802154 6LOWPAN=y
CONFIG_6LOWPAN_IPHC=y
CONFIG_MACB802154=y

L
Other Supporting Features

- Distribute new features as patches

- Middleware
- Adding a GATT interface for loTivity to BlueZ

« Create a .bbappend for the BlueZ recipe
- Protocol integration
- RPL (Routing protocol for Low Power and Lossy Networks)
- XBee module for 802.15.4 support

- Security related features

- Opportunity to pack in early implementations of
IETF specs via patches

Application Development

- Application Development Toolkit
- Standalone cross-compiling toolchain with debugging and
profiling tools
- Constructing an SDK

- Picks all development packages for target
- ADT will include loTivity SDK

- Generates target ADT for specified build machine
architecture
- loTivity developers can focus on application
development without getting bogged down by
details of target

B
Yocto Eclipse Plug-in

- Eclipse integration with Yocto ADT
- Access to cross-compiler, debugging and profiling tools

- Remote application debugging, step through code
- Real hardware via network using its |IP address
- QEMU

- Install Plug-in and point it to your target ADT

- Configure remote connection in “C++ Remote Application”
under “Debug Configurations”

B
Remote Debugging

Quick Access

& | Boc- FET

15 Debug % % & |i» Y = O ®=Variables & 9 Breakpoints ! Registers m\ Modules = 0
= [E]test_gdb_i586-poky-linux [C/C++ Remote Application] X =% | & ® % |32
= &8 gdbserver debugger (2/2/15, 11:37 AM) (Suspended) Name Value
= o Thread [1] (Suspended: Breakpoint hit.) o8 arge g

1 main() main.c:18 0x080485fc 5 #argy | Oxbffffd94

» Remote Shell
w4 /opt/poky-edison/1.6/sysroots/i686-pokysdk-linux/usr/bin/i586-poky-linux/i586-f

| /home/kmaloor/workspace/test/Debug/test (2/2/15, 11:37 AM) I
.] . ___J
[main.c 2 = g8 o= Outline 2 = 8
yo g
10 * Main class of project test o B o ¥ ¥
1 * .
12 * @param argc the number of arguments & stdio.h

13 * @param argv the arguments from the commandline
14 * @returns exit code of the application
15 */

416-1int main(int argc, char **argv) {

7 // print a greeting to the console

18 printf("Hello World!\n");

e main(int, char**) : int

0 return 0;

& Console % ¥ Tasks ! Problems (@ Executables [Memory [PowerTop & Terminals ® X % | B | =B v v =0

test_gdb_i586-poky-linux [C/C++ Remote Application] /home/kmaloor/workspace/test/Debug/test (2/2/15, 11:37 AM)

Releasing Your Application

- Write a recipe to build your application in the Yocto
environment

- Distribute application packages for specific target
platforms

B
Putting It To Test

- Built loTivity and toolchains for Intel Edison and
MinnowBoard MAX

- BSPs available online
- C++ MinnowBoard/Edison applications built with ADT

Ambient Light
Temperature

. Resource Edison
Android _ Aggregation .
Ul MinnowBoard Application
loTivity Application

loTivity
Yocto loTivity
Yocto

To Conclude...

- Yocto provides for greater scale
- Configure in one place, deploy on any Yocto-based platform

- Improved embedded loT app developer experience
- Linux supports state-of-the-art loT technologies
- We've had promising results

TERNETor
loTivity YOCTO - % THINGSE -

O
PROJECT @*GE

How Can You Participate In loTivity”?

- loT application developers

- Open-source contributors

- Propose new framework features, use cases
- https://www.iotivity.org/get-involved

- loTivity Mailing List

Resources

loTivity SDK and Samples https://www.iotivity.org/
Open Interconnect Consortium http://openinterconnect.org

meta-oic Yocto Layer
https://qit.yoctoproject.org/cqit/cqit.cgi/meta-oic/about/
Working with kernels in the Yocto Project: Presentation
https://www.yoctoproject.org/sites/default/files/devday-
kernel-tzanussi-elc-2013.pdf

Yocto Eclipse IDE Plug-in: Instructional video
http://www.youtube.com/watch?v=3ZI0u-gLsh0

Thanks for your time!

Q&A

