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What is ACRN

ACRN is a Big Little Hypervisor for IoT Development

ACRN™ is a flexible, lightweight reference hypervisor, built with
real-time and safety-criticality in mind, optimized to streamline
embedded development through an open source platform




Architecture Overview
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ACRN as a Device Hypervisor
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Verified Boot Sequence with SBL “‘
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Verified Boot Sequence with UEFI

CSE UEFI ——— ACRN.EFI |[—————) OS Bootloader ————) SOS Kernel |———) ?Aeo"c';;? ——>  vsBL

UEFI verifies ACRN & OS Bootloader & SOS Kernel
SOS kernel verifies DM and vSBL thru dm-verity
VSBL starts the guest side verified boot process

E: ACRN remains EFI runtime services and boot time services (without interrupt)




SEED Virtualization
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HV gets pSEED from ABL,
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VM
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MEI Subsystem
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HECI emulator implements a virtio
PCle device to support multiple
User OS.

HECI BE will communicate with
HECI FE driver to send & receive
the HECI messages.

HECI client layer protocol will
read/write to SOS MEI cdev directly.
And HECI bus messages will
emulate in the BE.

MEI: Intel Management Engine Interface Linux driver; mei_cl_driver: mei client driver



Storage Virtualization
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Network Virtualization
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GPU Virtualization
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Audio Virtualization “'
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*SOF: Sound Open Firmware; PCM: Pulse-code modulation; IPC: Inter-Processor Communication



USB Virtualization
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XHCI emulator provides multiple
instances of virtual xHCI
controller to share among
multiple User Oss, each USB
port can be dedicatedly assigned
to a VM.

xDCI controller can be passed
through to the specific user OS
with I/O MMU assistance.

DRD BE service emulate the
PHY MUX control logic. And
DRD FE driver provide sysfs
interface to user space of user
OS to switch DCI/HCI role in
CarPlay SW.



Call for Participation

https://projectacrn.github.io/index.html

Joining ACRN Community Today!!!


https://projectacrn.github.io/index.html

