ACIAN

ACRN: A Big Little Hypervisor for IoT Development

Eddie Dong, Intel Open Source Technology Center

Key contributors: Christopher Cormack, Matthew Curfman, Jeff Jackson




Table of Contents

PART 1: ACRN OVEIVIEW e page 3
PART 2: Security In ACRN e page 6
PART 3: Rich I/O Mediation ..o page 10

PART 4: Call for Participation ... page 16




What is ACRN

ACRN is a Big Little Hypervisor for IoT Development

ACRN™ is a flexible, lightweight reference hypervisor, built with
real-time and safety-criticality in mind, optimized to streamline
embedded development through an open source platform




Architecture Overview

~

Virtual Eirmware Virtual Firmware

Service VM Linux VM / Android VM
Enclaves Android Trusty
VM User Userworld World
Manager rcRNEEY e |0 o -------\-\-\-\-\---\——— " ————-—-{||_ o
Model
Ki |
(Mediators) eme Kernel
Keystore
__L_err [ virtio ] [ ceystore ]
Kernel FE Drivers virtio
FE Drivers
C Kernel
[ Native Device Driver Mediators

L e
ACRN Hypervisor
Hypercalls
VM API ] [ Virtio API ] [TrustyAPl] VPIC/IVLAPIC/
Vi ] [ S0 ] [ VIOAPICV/MS

Firmware (UEFI, SlimBoot etc.)

- SOC Platform (Apollo Lake etc.)




()

ACRN as a Device Hypervisor

« Small footprint

___ ACRN

290K

BSD licensee
Be able to cherry pick piece of codes into OSV/OEM’s own hypervisor
Verified boot

ich 1/0 mediators

Mediated \/jrtio  Virtio  Virito  Emu.  Virtio  Virtio Virtio Emu. Virtio
Passthru



Verified Boot Sequence with SBL “‘

: | « CSE verifies SBL

Device Model

APP1 » SBL verifies ACRN & SOS
t Android VM 1 Kernel

( ) » SOS kernel verifies DM &
SoOs
verification process (reusing

SOS Kene vSBL thru dm-verity
sin
ACHE the Android verified boot

» VSBL starts the guest side
} mechanism)
vSBL: Android OS Loader

{

O

Ll

* NOTE: Each user VM has a
DM APP instance in SOS

VSBL: Initialization

A —




Verified Boot Sequence with UEFI

CSE UEFI ——— ACRN.EFI |[—————) OS Bootloader ————) SOS Kernel |———) ?Aeo"c';;? ——>  vsBL

UEFI verifies ACRN & OS Bootloader & SOS Kernel
SOS kernel verifies DM and vSBL thru dm-verity
VSBL starts the guest side verified boot process

E: ACRN remains EFI runtime services and boot time services (without interrupt)




SEED Virtualization

Service OS

Device Model

Kernel VSEEDO

Get and Erasg

| User OS

| User OS

User OS

Kernel

VSEED1
Get and Erase

SOS SBL

VSEEDO

VSEED1 VvSBL
— 4

J
Derive J._/

Derive - 3

ACRN Hypervisor

UEFI/SBL
One time read after

boot

CSE Hardware & Firmware pSEED

()

HV gets pSEED from ABL,
which retrieves from CSE
through HECI.

Hypervisor implements Key
derivation function (KDF) to
generate child seeds (VSEED)
per request

HMAC-SHA256 for Android
VM
HMAC-SHA512 for Linux VM

Present the derived vVSEED
to guest VM. Each guest
cannot see/derive the other
guest’s VSEED.



N

MEI Subsystem

|
PCI-MEI
A

Service OS User OS
~ | User OS
HECI ACRN Device Model
Applications User OS
A HECI virtio BE | HECI
Service b J Applications
A
User

_________________ et et I I St U
Kernel MEI cdev Kernel MEI cdev

A

' mei_cl_driver

A
MEI Subsystem

[ HECI virtio FE Driver ]

&

<

ACRN Hypervisor

CSE Hardware

APL hardware

HECI (Host Embedded Controller Interface)

o
v

HECI emulator implements a virtio
PCle device to support multiple
User OS.

HECI BE will communicate with
HECI FE driver to send & receive
the HECI messages.

HECI client layer protocol will
read/write to SOS MEI cdev directly.
And HECI bus messages will
emulate in the BE.

MEI: Intel Management Engine Interface Linux driver; mei_cl_driver: mei client driver



Storage Virtualization

Service OS | User OS
User OS
_ _ ACRN Device Model User OS
Mapl/filter a guest disk
access to a host storage Storage BE Storage FE
area (disk, partition, file or Service virito driver
portion of them) < —
—— e Y
[ Native Storage Driver ] I{ Guest 1
Y " Virtual Disk )
. Vg I
ACRN Hypervisor < >
v
( )
Physical Disk [ Vm1 partition I Vm2 partition ]
\ _J

Map a host storage area (SAR), i.e., disk / partition / file, as a guest disk
Map a portion of host SAR (start_LBA, size) as a guest disk




Network Virtualization

Service OS Lser OS
User OS
User OS
Virtual Bridge / NiE =
. Service
Switch A Virtio-NIC FE
driver
ACRN Devige Model yy
: \ 4
Native Tap / Tun @IS 1
NIC Driver Driver . e !
I Virtual NIC 1
N Y S
L{

ACRN Hyperv&!\ e

External Network -,
> \‘-’




Service OS
Device Model
10C BE service
(filter to emulate the UA;RT
whitelisted CMD only) Emulation
A
7y T

A 4

I0C Driver
(CBC drive)

IOC (I/O Controller) Virtualization :

User OS

User OS

User OS
10C
Application

10C Driver
(CBC drive)
A

Y

- Y -

-~

ACRN H‘ypervisor

Physical
UART

I0C Hard
= caneus

* SOS owns IOC, but UOS may
access part features

» Whitelisted CMDs from UOS
may be forwarded / emulated

» Support Intel IOC controller
only, OEMs may extend



GPU Virtualization

Service OS

App

A 4

Host GPU o
Driver

lLlear NAC

llear OS

User

Kernel
GPU BE Services

User OS

Guest GPU
Driver

ACRN Hypervisor

!
]
I
L----1 MPTAPI

- -

Pass-
through

GPU




Audio Virtualization “'

Service OS Hear OS :
User OS * ALSA (Advanced Linux Sound
- Architecture) lib - same user API
Audio Apps Audio Apps across VMs
[ ALSA lib/Tiny ] [ ALSA lib/Tiny ] +  SOF FE driver forwards IPC
e 'f'_-ff‘ _____________________ User A'fA il commands to its counterpart SOF BE
v N S b = T service (kernel space) thru virtio
ALSA Core ] Kernel [ ALSA Core ] Kernel shared rings
) X X + The commands carry the address of
[ SOF Machine Driver ] — . [ SOF Machine Driver ] audio data (not data)
X [ V'”'g ATEID S Shared X - Service OS can directly access the
[ SOF PCM Driver ] 3 Rings [ SOF PCM Driver ] memory of User OS
% t & * FE driver communicate with IPC
. \[ SOF IPC Driver ] y, dr!ver thru ops callback of platform
\[ SOF IPC Driver ] y. N — driver
o 4 - t » BE service communicate with IPC
L : VirtioVAUdiGIEE driver thru IPC TX/RX interface of
[ DSP Platform Driver ] DifvEs ] — IPC driver

R

ACRN Hypervisor

*SOF: Sound Open Firmware; PCM: Pulse-code modulation; IPC: Inter-Processor Communication



USB Virtualization

==

Service OS | User OS
- - - -- , | User OS
{ACRN Device Model _ ;
v indutluty| I User OS
DRD XHCI : . CarPlay
BE Service Emulator I 1 Application
A A I : Gadget A Host
1 1 Daemon Daemon
1 1
1 1 A SW Rol¢ Switch 4
1 1
User v . . e g
- K S -
Kernel Sys IIF usbfs : ] Kernel Sys I/F
DRD Driver * | : DRD FE Driver
1 1
v 1 1 M f A
XHCI Driver | 1 : xDClI Driver ! xHCI Driver
1
A : : Y 1 A
1 1 I 1
1 1 1 }
1  Gtcoc—cococococoooooo|lbooooooooo 1 y
1 ACRN Hypervisor 1
s 1
\ 4 v
PHY MUX control xHCI controller xDCI 16 YU
Controller
[ ]
I
PHY MUX
APL hardware
USB2 PHY I_l USB3 PHY |
T

()

XHCI emulator provides multiple
instances of virtual xHCI
controller to share among
multiple User Oss, each USB
port can be dedicatedly assigned
to a VM.

xDCI controller can be passed
through to the specific user OS
with I/O MMU assistance.

DRD BE service emulate the
PHY MUX control logic. And
DRD FE driver provide sysfs
interface to user space of user
OS to switch DCI/HCI role in
CarPlay SW.



Call for Participation

https://projectacrn.github.io/index.html

Joining ACRN Community Today!!!


https://projectacrn.github.io/index.html

