
The sphinx simulator project

Nicolas CARRIER

April, 6, 2016

The sphinx simulator project 1 / 32



Presentation
The problem
Overview
Features
Limitations
Architecture

Firmwared

The firmwares

Gazebo

Conclusion

The sphinx simulator project 2 / 32



The problem

Parrot:
▶ Builds wireless devices since 1994, bluetooth, WiFi...
▶ First commercial drone, the AR.Drone in 2010
▶ Linux based drones, custom distribution
▶ Located in the center of Paris

Problem:
▶ No accessible zone to fly drones
▶ How to develop something like flight plans ?
▶ How to test big drones ? Flying wings ?

The sphinx simulator project 3 / 32



Overview

Sphinx:

▶ French word for the death head hawk moth
▶ It’s the one which flies, not the one which asks questions
▶ Means Simulator Project Hopefully Implemented for Next Xmas
▶ Originally an internal tool for development / automatic testing
▶ Team created in february 2015, first usable release in fall

The sphinx simulator project 4 / 32



Features 1/3

▶ Based on gazebo
▶ Mostly open-source (more on that later)
▶ Allows to test nearly original Parrot drone firmwares
▶ There’ll always be a Next Xmas -> no deadline missed, never

The sphinx simulator project 5 / 32



Features 2/3

▶ Support for Bebop, Bebop 2, Rolling Spider, Disco
▶ Partial support for our top secret future drones
▶ Integration of WiFi, Bluetooth
▶ Uses exprtk, for easier models tweaking
▶ Support for multiple drones in the same simulation
▶ Seamless use for any controller above the SDK

Even for autonomous tests in Jenkins CI servers

The sphinx simulator project 6 / 32



Features 3/3

Used for:
▶ Development of new features (flightplan), debug
▶ Fine-tune our drone control algorithms
▶ Autonomous regression tests
▶ Manual validation tests
▶ Discussions ongoing for a public release for app developers
▶ One day for the training of our FPV racing team ?

Who knows...

The sphinx simulator project 7 / 32



Limitations

▶ Runs on Linux only
▶ Firmware adaptations are not trivial

but things are getting simpler as we support more and more drones
▶ Not strictly the original firmware
▶ Not fully deterministic

The sphinx simulator project 8 / 32



Architecture

3 main parts
▶ Gazebo + some custom plug-ins
▶ A firmware, adapted and recompiled for x86 / amd64
▶ Firmwared (https://github.com/ncarrier/firmwared-manifest)

The sphinx simulator project 9 / 32



Architecture

The sphinx simulator project 10 / 32



Presentation

Firmwared
Presentation
Control
OverlayFS
Namespaces
AppArmor

The firmwares

Gazebo

Conclusion

The sphinx simulator project 11 / 32



Presentation

System daemon responsible of spawning instances of drones firmwares.
▶ Firmware’s programs run as if they were on a target

root privileges...
▶ Implements containers ”by hand” for a basic isolation

▶ Chroot on overlayfs
▶ Namespaces
▶ Apparmor

▶ Firmwares ext2 filesystem images or a ”final” directories
(more on that later)

▶ Multiple instances can be spawned from a single firmware
▶ Open-source (see Parrot-Developer’s github)

The sphinx simulator project 12 / 32



Control

▶ Driven by a named unix socket
▶ Uses libpomp (https://github.com/Parrot-Developers/libpomp)

Marshalling API with an a-la-printf protocol
▶ Two clients:

° shell: fdc based on pomp-cli, complete
° C++ gazebo plug-in: fwman

The sphinx simulator project 13 / 32



Example

$ fdc prepare firmwares /.../final
... the firmware garrulous_bellatrix has been created

$ fdc prepare instances garrulous_bellatrix
... the instance tremulous_nevena has been created

$ fdc start tremulous_nevena
...

The sphinx simulator project 14 / 32



OverlayFS

▶ An RW layer on top of an RO one (the rootfs)
▶ The RO layer is preserved and can be

▶ the rootfs produced by the compilation (final dir)
▶ an ext2 image, produced from the final by Alchemy

▶ the RW layer contains the diff on the file system, due to the execution:
can be used for postmortem analysis

The sphinx simulator project 15 / 32



OverlayFS

The sphinx simulator project 16 / 32



Namespaces

Unshare some global resources to protect their access from inside an instance
▶ Network namespace

▶ No impact on the host’s networking
▶ An interface can be stolen for the instance (WiFi AP)

▶ Pid namespace
▶ Renumbering of processes, starting from 1 in the namespace
▶ Our init process (fork of Android’s) runs as if on target

▶ Mount namespace
▶ No access from the host to the instance’s mount points
▶ No access from the instance to the host’s mount points
▶ All mounts are automatically unmounted when the namespace is destroyed

(read: when the instance’s pid 1 dies)

The sphinx simulator project 17 / 32



AppArmor

▶ Some other global resources are still shared
▶ AppArmor allows to restrict their access, for example:

▶ Capabilities (sys_time, hahem...)
▶ Filesystem entities (/dev/mem, /proc/sysrq-trigger, hahem...)

▶ Uses a shell-like ”glob” syntax
=> we managed to use it !

The sphinx simulator project 18 / 32



Presentation

Firmwared

The firmwares
Content

Gazebo

Conclusion

The sphinx simulator project 19 / 32



Content 1/2

Our build system is Alchemy
▶ Produces a ”full” root fs: the staging (with symbols, headers...)
▶ Produces a stripped down rootfs for use on target: the final
▶ From this final, firmware images are produced, in plf, ext2, tar.gz...
▶ Firmwared can use directly a final directory or an ext2 image

The sphinx simulator project 20 / 32



Content 2/2

The firmware’s variant used in the simulator has:
▶ Different hardware access code (IPC with gazebo)
▶ Different startup / initialization sequence (not the same ”hardware”)
▶ All the rest of the code is (or can be...) the same

Pros:
▶ No kernel level development
▶ Negligible impact on performances

Cons:
▶ Not the exact same code and code path as a real firmware
▶ Maintenance burden (2 variants of one firmware)

The sphinx simulator project 21 / 32



Other methods
▶ Full virtualization

▶ High impact on performances
▶ Drivers using IPCs with gazebo would be needed

▶ Qemu ”transparent” emulation: incomplete (netlink)
▶ Pseudo-hardware in the loop

▶ Soft runs on hardware with IPCs via IP
▶ No recompilation, same code with runtime adaptations, but lot of work and not

the same code paths anyway
▶ Latency and throughput problems (e.g. video) gzserver needs to run on target

▶ Hardware in the loop
▶ It’s the holy grail: test the real firmware on a desktop
▶ Forces to develop an hardware device per sensor / actuator
▶ Not so hard for a gpio, but for a camera sensor ?
▶ High cost for first version
▶ My bet (and hope) is: we will come to it

The sphinx simulator project 22 / 32



Presentation

Firmwared

The firmwares

Gazebo
Overview
Plug-ins
Simulation description

Conclusion

The sphinx simulator project 23 / 32



Overview

▶ Gzserver simulates a world, including models with physical interactions
▶ Plug-ins system world, model and gui
▶ Gzclient optional client for real-time opengl visualization
▶ Open-source, C++
▶ XML description (sdf) of simulation and models
▶ We use a modified gazebo 7 with some added features, given back to the

project

The sphinx simulator project 24 / 32



Plug-ins

Model plug-ins:
▶ One per sensor / actuator

▶ IPC with gazebo: named socket
▶ no IP overhead
▶ abstract sockets blocked by netns
▶ for now all of them use iio / libiio

World plug-ins:
▶ fwman: client controlling firmwared
▶ aerodynamic
▶ wind

Gui plug-in:
▶ shake: gui plugin for Disco’s take off sequence

The sphinx simulator project 25 / 32



World files

▶ Normal sdf files
▶ References the fwman plugin
▶ Include no drone models, but reference to the firmwares used

The sphinx simulator project 26 / 32



Drone model files

▶ Sdf files + xinclude for factoring
e.g. same body, different hulls

▶ Embedded inside the firmware
this way, firmware and model are kept in sync

▶ References the actuators and sensors plug-ins

The sphinx simulator project 27 / 32



Simulation description

▶ Analysis of a world
▶ Analysis of a model

The sphinx simulator project 28 / 32



Presentation

Firmwared

The firmwares

Gazebo

Conclusion

The sphinx simulator project 29 / 32



Demonstration

The sphinx simulator project 30 / 32



Ongoing and potential work

Ongoing:
▶ Video support
▶ Advanced vision features, follow me ...
▶ RC support

Potential:
▶ Visual feedback for leds
▶ HIL ? (finger crossed !)

The sphinx simulator project 31 / 32



Thank you for your attention

The sphinx simulator project 32 / 32


	Presentation
	The problem
	Overview
	Features
	Limitations
	Architecture

	Firmwared
	Presentation
	Control
	OverlayFS
	Namespaces
	AppArmor

	The firmwares
	Content

	Gazebo
	Overview
	Plug-ins
	Simulation description

	Conclusion

