
www.timesys.com ©2020 Timesys Corp.www.timesys.com ©2020 Timesys Corp.

Board Farm APIs
for Automated Testing of

Embedded Linux

Tim Bird
Principal Software Engineer

Sony Electronics

Harish Bansal
Technical Engineer

Timesys

www.timesys.com ©2020 Timesys Corp.www.timesys.com ©2020 Timesys Corp.

For years, designers of automated testing systems have used ad-hoc designs
for the interfaces between a test, the test framework and board farm software,
and the device under test. This has resulted in a situation where hardware
tests cannot be reused from one lab to another.

This talk presents a proposal for a standard API between automated tests and
board farm management software. The idea is to allow a test to query the farm
about available bus connections, attached hardware and monitors, and other
test installation infrastructure. The test can then allocate and use that
hardware, in a lab-independent fashion. The proposal calls for a dual
REST/command-line API, with support for discovery, control and operation -
of hardware and network resources. It is hoped that establishing a standard in
this area will allow for the creation of an ecosystem of shareable hardware
tests and board farm software.

Abstract

www.timesys.com ©2020 Timesys Corp.www.timesys.com ©2020 Timesys Corp.

▪ Problem statement
▪ Introduction to Embedded Board Farm Cloud
▪ Use cases for REST API
▪ Board FARM API details
▪ Issues encountered
▪ What’s next?

Agenda

www.timesys.com ©2020 Timesys Corp.

4

▪ There are many tests but no standardized way of running tests on physical
devices

▪ There are many different Test Frameworks
▪ There are a few Board Farm frameworks but there is no standardized way

to use different Test Frameworks or run tests
▪ Every farm implements test infrastructure differently

▪ Many labs use ad-hoc infrastructure
▪ Tests written for one lab do not work in another lab

▪ Nobody can share tests
Solution:
▪ Creating a standard method to access a Board Farm allows:

▪ Board farms infrastructure technologies can evolve separately from the
interface to the farm

▪ Tests can be written that work in more than one lab
▪ Test Frameworks can work with more than one lab

Problem Statement

www.timesys.com ©2020 Timesys Corp.

5

▪ GPIO test, Serial Port test
▪ Need to control two endpoints

▪ One on device under test (DUT) and one external endpoint
▪ Audio playback test

▪ Need to control two endpoints
▪ One on device under test (DUT) and a capture device

▪ Power measurement (via external power monitor)
▪ Need to control two endpoints:

▪ Application or workload profile on DUT
▪ Capture of power measurement data on external power monitor

▪ USB connect/disconnect (robustness) testing
▪ Need to control two endpoints:

▪ Application or monitor on DUT
▪ USB hardware external to board (drop/re-connect vbus)

Examples of Hardware/Software integration tests

www.timesys.com ©2020 Timesys Corp.

6

▪ Netperf test
▪ Need to manage two endpoints

▪ Netperf client (on DUT)
▪ Netperf server (off DUT)

▪ May want exclusive use of netperf server for a single node or set
of nodes during a test

▪ Need to discover server address (specific to lab)
▪ Boot test

▪ Need to manage many devices (DUT, storage, serial, and power
controller)
▪ DUT: Provision the DUT
▪ Storage controller: install kernel and/or root fs
▪ Serial controller: capture DUT serial line (for console output)
▪ Power controller: turn power off/on

Examples of multi-device orchestration

www.timesys.com ©2020 Timesys Corp.

7 High Level Concept 1 – API between framework and lab

Board
Farm 1

Board
Farm 2

Board
Farm 3

REST API

Test Framework A
CLI

Test Framework B
APIs

Test Framework C
APIs

www.timesys.com ©2020 Timesys Corp.

8 High Level Concept 2 – API between test and lab

REST API

Test Framework A
CLI

Test Framework B
APIs

Test Framework C
APIs

GPIO
endpoints

Power
measurement

USB
endpoint

Power
control

Network Audio/Video
capture

Storage

Board
in lab

www.timesys.com ©2020 Timesys Corp.

9 Fuego/EBFC REST-API elements

▪ API proposal
▪ 3 parts

▪ REST API
▪ Command line interface
▪ Environment variables

▪ REST API based on https and JSON
▪ Extension to LAVA REST API
▪ Only requires curl and jq

▪ Command line tool
▪ Same operations as REST API
▪ Suitable for automated use, as well as human interactive use

▪ Environment variables
▪ Used to communicate values to test program on target
▪ Stored in /etc/test-config, or passed in program environment

www.timesys.com ©2020 Timesys Corp.

10

Introduction to Timesys’
Embedded Board Farm Cloud

www.timesys.com ©2020 Timesys Corp.

11 Timesys Embedded Board Farm Cloud Architecture

4 Components
● EBF Master
● Zombie (Lab Controller)
● IO-CX (Lab Controller)
● Your Boards (DUT)

www.timesys.com ©2020 Timesys Corp.

12 EBF Master

▪ Multi-user Access from
anywhere

▪ Board Dashboard
▪ Image and File transfer

management
▪ Centralized Board Management
▪ User management
▪ Zombie management
▪ Standard off-the-shelf PC/Server
▪ EBF Master Docker

www.timesys.com ©2020 Timesys Corp.

13

Zombie
▪ Zombie (red)
▪ App/Test Server (blue)

▪ Power Control
▪ USB hotplugs
▪ Ethernet hotplugs
▪ SDMUX
▪ USB MUX
▪ I2C bus connector
▪ GPIO connector

IO-CX

Lab Controllers

www.timesys.com ©2020 Timesys Corp.

14

▪ Sign in

▪ Visit All Devices

▪ Allocate the device

▪ Launch Console

▪ Retire Device

▪ Visit My Devices

Board/Device Management

www.timesys.com ©2020 Timesys Corp.

15 Board/Device Dashboard

Console

Power Control

Live Streaming

▪ Device must be allocated to access this page

www.timesys.com ©2020 Timesys Corp.

16 EBF Features

▪ Device must be allocated to access this
page

▪ Power Control
• Green = ON
• Red = OFF

▪ New Console Session
• Serial
• SSH
• adb (Android)

▪ IO-CX Menu
• Green = device controlled
• Red = zombie controlled

▪ SDCard Boot

▪ Network Boot

▪ Release Device

www.timesys.com ©2020 Timesys Corp.

17 GPIO Connections

Pins 1-6

Pins 7-8

www.timesys.com ©2020 Timesys Corp.

Prototype use case:
Lab-independent GPIO test

www.timesys.com ©2020 Timesys Corp.

19 High Level Concept illustration using real examples

Timesys
Embedded Board Farm

REST API

Fuego
ttc

 LAVA
Test Job

Timesys
Remote Debugging

Web UI/CLI

Sony
Embedded Board Farm

GPIO

Board 1 Board 2 Board 3 Board 1 Board 2 Board 3

www.timesys.com ©2020 Timesys Corp.

20 GPIO REST API use case

Lab

Resource

gpio end point

DUT
 (Rpi4)

gpio end point

Login or Test Job

Read GPIO

Assumption:
Lab knows the binding of DUT and the
controller - Query the controller ID and types
1. Manual Execution

a. Login to DUT
b. Set GPIO pins on DUT
c. Read GPIO from Lab Controller using

REST API
2. Test Script

a. Set GPIO pins on DUT
b. Read from DUT GPIO from Lab

Controller using REST API
3. Test Automation

a. Test job to Auto deploy on DUT (Test
job include script to set GPIO on DUT
and and invoke Lab Controller API

b. Run Test
c. Collect results

 (REST-API)

www.timesys.com ©2020 Timesys Corp.

21

Video of actual test execution here
(We did it!!)

https://docs.google.com/file/d/1ChgJ7Q4OHsTrfjP9zDovwX5If6X5cjD6/preview

www.timesys.com ©2020 Timesys Corp.

REST API Details

www.timesys.com ©2020 Timesys Corp.

23 GPIO REST API details
http://{EBF IP Address}/api/<DeviceName>/gpio/
<command>/<gpio_pin_pattern(location)>/<gpio_pin_data>

command gpio_pin_pattern gpio_pin_data (optional) Examples

set_mode

note: 'mode' refers to read or write

Lab Pin #(decimal) {read /write } command: set_mode 6 “data”: write
output: {“result”: “success”, “data”:”write”}

get_mode Lab Pin #(decimal) command: get_mode 6
output: {“result”: “success”, “data”: “read”}
note: 0 is considered 'write', and 1 is considered 'read' for Timesys lab
controller

write Lab Pin #(decimal) 0 or 1 command: write 6 0
output: {“result”: “success”, “data”: “0”}

read Lab Pin #(decimal) command: read 6
output: {“result”: “success”, “data”: “0”}

set_mode_mask Lab pin locations pattern mask 0-255
(for a 8 pin controller)

command: set_mode_mask 255 170
output: {“result”: “success”, “data”: “170”}

get_mode_mask Lab pin locations pattern mask command: get_mode_mask 255
output: {“result”: “success”, “data”: “170”}

write_mask Lab pin locations pattern mask 0-255 command:write_mask 255 42
output: {“result”: “success”, “data”: “42”}

read_mask Lab pin locations pattern mask command: read_mask 255
output: {“result”: “success”, “data”: “42”}

Result Format:

{“result”: “success”, “data”: <API dependent>}
{“result”: “fail”, "message": ”<reason for failure>”}

www.timesys.com ©2020 Timesys Corp.

24 What the API looks like in practice

Excerpt from gpio_test.sh:

 # DUT Pin 20 is set in DUT_GPIO_NUM
 # Lab Controller GPIO Pin 6 is set in LAB_GPIO_NUM and connected to DUT Pin20
 test_desc4="write a 1 to gpio $DUT_GPIO_NUM"

 # write to the DUT GPIO using sysfs
 echo 1 >/sys/class/gpio/gpio${DUT_GPIO_NUM}/value

 # read lab controller
 URL=https://${LAB_SERVER}/api/${BOARD_NAME}/gpio/read/${LAB_GPIO_NUM}
 value=$(wget -q -O- $URL | jq '.data')
 echo "# value read from lab endpoint=$value"

 if ["$value" = 1] ; then
 echo "ok 4 - $test_desc4“
 else
 echo “not ok 4 - $test_desc4”
 fi

www.timesys.com ©2020 Timesys Corp.

25 Comparison of command line and REST API

Device Power OFF05 ebf <Device Name> power off

Device Power Status04 ebf <Device Name> power status

Device Power ON03 ebf <Device Name> power on

Allocate Device02 ebf <Device Name> allocate

List Devices01 ebf list devices http://{lab server}/api/devices/

http://{lab server}/api/devices/<DeviceName>/assign/

http://{lab server}/api/devices/<DeviceName>/power/on/

http://{lab server}/api/devices/<DeviceName>/power/

http://{lab server}/api/devices/<DeviceName>/power/off/

Function CLI command REST API

EBF CLI is implemented using the REST API

www.timesys.com ©2020 Timesys Corp.

Wrap-up

www.timesys.com ©2020 Timesys Corp.

27

• Differentiating Test Framework interface from test interface
• Some actions are performed by the Test Framework:

• run, upload, download
• Some actions are performed by the test:

• gpio operations (set direction, read, write)
• Different frameworks put control of operations in different places

• Determining pre-defined data vs. discovered data
• Example: Currently hardcode GPIO numbers for DUT and lab endpoint

• Would be better to discover mapping between them
• Will be different per lab (depends on wiring)

• Supporting full range of operations:
• Fuego needs recursive file copy, but REST API only supports single file

• Worked around the issue, but need to decide exact features for API
• ie – Refine the API

• Needs integration with larger CI loop

Issues Encountered

www.timesys.com ©2020 Timesys Corp.

28

• Have demonstrated basic concept
• Need to create APIs for other lab resource types (other endpoints)

• Pretty sure many resources will use “start capture”, “end capture”, and
"get_log" actions

• e.g. power measurement, audio capture, video capture
• Decide resource-specific actions to support

• e.g For a power measurement resource, only support “get_log”, or
support aggregate operations, like “get_max_power”?

• Run different tests, and see what issues crop up

What’s next

www.timesys.com ©2020 Timesys Corp.

29

• Have demonstrated basic concept
• Need to create APIs for other lab resource types (other endpoints)

• Pretty sure many resources will use “start capture” and “end capture”
actions

• e.g. power measurement, audio capture, video capture
• Decide resource-specific actions to support

• e.g For a power measurement resource, only support “get_log”, or
support aggregate operations, like “get_max_power”?

• Run different tests, and see what issues crop up

• Convince other labs and frameworks to adopt API

What’s next

www.timesys.com ©2020 Timesys Corp.

30

• Have demonstrated basic concept
• Need to create APIs for other lab resource types (other endpoints)

• Pretty sure many resources will use “start capture” and “end capture”
actions

• e.g. power measurement, audio capture, video capture
• Decide resource-specific actions to support

• e.g For a power measurement resource, only support “get_log”, or
support aggregate operations, like “get_max_power”?

• Run different tests, and see what issues crop up

• Convince other labs and frameworks to adopt API
• Start sharing tests
• Profit from a community of tests and results!

What’s next

www.timesys.com ©2020 Timesys Corp.

31

https://github.com/TimesysGit/board-farm-rest-api

GitHub Repository

https://github.com/TimesysGit/board-farm-rest-api

www.timesys.com ©2020 Timesys Corp.

32

Questions or Comments?

www.timesys.com ©2020 Timesys Corp.

Additional Use Case Examples

www.timesys.com ©2020 Timesys Corp.

34 Power measurement

Lab

Lab Resource

power monitor

DUT

2

1

Test of power drawn during test load

1. Use REST API to control the lab
resource end point
a) start measuring

2. Start DUT test load
3. Use REST API to control the lab

resource end point
a) stop measuring
b) collect the results

Test or framework can analyze power
log for test pass/fail condition

Analysis does not need to be done on
DUT

Power measuring lab
end point

3

1

www.timesys.com ©2020 Timesys Corp.

35

DUT 1

Serial

Test of Serial hardware

RS232
1. Use REST API to configure

lab resource as Rx or Tx,
and baud rate

2. Use local commands to set
DUT serial RX or TX and
baud rate

3. Initiate capture
4. Initiate transmission
5. End capture, collect log
6. Compare transmission vs

capture data

Can also test RS485 (multi drop)

Lab

Lab Resource

Serial

2, 4, 5

1

1, 3. 5

www.timesys.com ©2020 Timesys Corp.

36 Multiplexed or Dynamic resources use case

Lab

Resource

netperf server
Ethernet end point

DUT 1

netperf client
Ethernet end point

1, 3
2

4

Test Network Performance

1. REST API to control lab
resource endpoint
1. start netperf
2. reserve for use by DUT 1

2. Start netperf client
1. communicate server endpoint

address
2. collect log

3. REST API to control the lab
resource end point
1. release or stop netperf server

4. Can reassign netperf server to a
different DUT for a subsequent
test
1. i.e, the resource is

multiplexed between DUTs

IP address of Lab source
end point

long term - allocate this
to a particular test run or
DUT (multiplexing is built
into the bus)

IP address of DUT end point

DUT 2

netperf client
Ethernet end point

