
Open Source Graphics 101:
Getting Started

Boris Brezillon
ELCE 2019

2

Disclaimer

● I am not (yet) an experienced Graphics developer
– Take my words with a grain of salt

– Please correct me if I’m wrong

Source: https://me.me/i/every-master-was-once-a-beginner-success-foundation-well-said-16284942

3

What is this talk about?
● This presentation is about

– Explaining what GPUs are and how they work

– Providing a brief overview of the Linux Open Source Graphics stack

● This presentation is not about
– Teaching you how to develop a GPU driver

– Teaching you how to use Graphics APIs (OpenGL/Vulkan/D3D)

4

The Graphics Pipeline

5

The Graphics Pipeline

GPU

Vertices

Textures

...
Transformation

6

The Graphics Pipeline
Vertices

TexturesTransformation

Graphics Pipeline

Geometry
Stage

Rasterizer
Stage

Viewport Lighting

...
Clipping

7

The Geometry Stage
Model

Vertices

Vertex Shader

Model, View,
Projection
Transform

Viewport
Transform

...
other kind of
vertex/normal
manipulation

Geometry/Tessalation Shaders

Primitive
Assemby

Clipping Culling

8

The Rasterizer Stage

Geometry stage

Rasterizer stage

Textures

Triangle setup

Fragment
shader

Merging
stage

Alpha blending
Late depth testing

9

GPU Internals

10

GPU Internals

Generic
Shader

Core

Texture
Units

Generic
Shader

Core

Generic
Shader

Core

Generic
Shader

Core

Triangle
Setup Units

Rasterizers

Blending Units

...

GPU

Caches

Scheduler

ALUALU

ALU ALU

Load/Store
Unit

Load/Store
Unit

11

Let’s go massively parallel!
● Why?

– Vertices, normals, fragments can be processed independently

– We have a lot of them (complex scene, complex models, high resolution)

– We want real-time rendering

● How?
– SIMD (Single Instruction Multiple Data)

– Shared dedicated units for complex/specialized tasks

– No fancy CPU stuff like out-of-order control logic, smart pre-fetcher, branch

predictors, ...

12

Parallization, how hard can it be?

SIMD + lot of cores: we’re done, right?

13

Parallization, how hard can it be?

Source: http://devhumor.com/media/multithreaded-programming

14

Parallization, how hard can it be?

● Stalls caused by memory access
– Add caches

– Multi-threading

● SIMD: try to get all ALUs busy
– Avoid conditional branches

– Try to pack similar operation together

15

Interaction with your GPU

16

CPU: Hey GPU, listen/talk to me please!

● The CPU is in charge of all apps running on a machine,
including graphics apps

● The CPU needs a way to send requests to/get results
from the GPU

● Huge amount of data needs to be exchanged
(vertices, framebuffers, textures, …)

17

CPU: Hey GPU, listen/talk to me please!

● How?
– Put everything in memory

– Set of operations to execute is also stored in memory (frequently called

command stream)

– Once everything is in memory, ask the GPU to execute what we prepared

– Let the GPU inform us when it’s done

18

GPU Command Stream

Vextex Job1

Vertices for
Model 1

Fragment Job1

Fragment
Shader Binary

for Model 1

Vextex Job2 Fragment Job2

Textures for
Model 2

Command Stream

Ancillary Data

Ancillary Data

......

Fragment
Shader Binary

for Model 2

Textures for
Model 1

Vertex
Shader Binary

for Model 2

Vertex
Shader Binary

for Model 1

Vertices for
Model 2

19

The Linux Graphics Stack

20

The Big Picture
Application

Graphics API

Kernel

OpenGL VulkanDirect3D

DRM

freedreno panfrost etnaviv ...

Mesa3D

EGLGLX

Userspace Drivers

i915

OpenGL Ecosystem

WSI

Vulkan Ecosystem

21

The Graphics API: What are they?
● Entry points for Graphics Apps/Libs
● Abstract the GPU pipeline configuration/manipulation
● You might have the choice

– OpenGL/OpenGLES: Well established, well supported and widely used

– Vulkan: Modern API, this is the future, but not everyone uses/supports it yet

– Direct3D: Windows Graphics API (version 12 of the API resembles the

Vulkan API)

22

The Graphics API: Shaders

● Part of the pipeline is programmable
– Separate Programming Language: GLSL or HLSL

– Programs are passed as part of the pipeline configuration...

– ... and compiled by drivers to generate hardware-specific bytecode

23

The Graphics API: OpenGL(ES) vs Vulkan
● Two philosophies:

– OpenGL tries to hide as much as possible the GPU internals

– Vulkan provides fine grained control

– Vulkan provides a way to record operations and replay them

– More work for the developer, less work for the CPU

● Vulkan applications are more verbose, but
– Vulkan verbosity can be leveraged by higher-level APIs

– Drivers are simpler

– Improved perfs on CPU-bound workloads

24

The Kernel/Userspace Driver Separation

● GPUs are complex beasts → drivers are complex too:
– We don’t want to put all the complexity kernel side

– Not all code needs to run in a privileged context

– Debugging in userspace is much easier

– Licensing issues (for closed source drivers)

25

Kernel Drivers
● Kernel drivers deal with

– Memory

– Command Stream submission/scheduling

– Interrupts and Signaling

● Kernel drivers interfaces with open-source userspace drivers live

in Linus’ tree: drivers/gpu/drm/

● Kernel drivers interfacing with closed-source userspace drivers

are out-of-tree

26

Userspace Driver: Roles
● Exposing one or several Graphics API

– Maintaining the API specific state machine (if any)

– Managing off-screen rendering contexts (if any)

– Compiling shaders into hardware specific bytecode

– Creating, populating and submitting command streams

● Interacting with the Windowing System
– Managing on-screen rendering contexts

– Binding/unbinding render buffers

– Synchronizing on render operations

27

Mesa: Open Source Userspace Drivers
● 2 Graphics APIs 2 different approaches:
● GL:

– Mesa provides a frontend for GL APIs (libGL(ES))

– GL Drivers implement the DRI driver interface

– Drivers are shared libs loaded on demand
● Vulkan:

– Khronos has its own driver loader (Open Source)

– Mesa just provides Vulkan drivers

– No abstraction for Vulkan drivers, code sharing through libs

28

Mesa State Tracking: Pre-Gallium
Application

Graphics API

Kernel

OpenGL

DRM

nouveau

Mesa3D

EGLGLX

DRI

i915...nouveau

i915

OpenGL
Ecosystem

...

DRI DRI DRIGL
Interface

GL
Iface

GL
Iface

GL
dispatcher

29

Mesa State Tracking: Gallium
Application

Graphics API

Kernel

OpenGL Direct3D

DRM

msmpanfrost etnaviv ...

Mesa3D

EGLGLX

DRI

Gallium3D

State Trackers

Driver Interface

panfrost etnaviv ... freedreno

OpenGL
Ecosystem

ninedd_function_table/DRI

GL Dispatcher

30

Mesa State Tracking: Vulkan
Application

Graphics API

Kernel

OpenGL Direct3D

DRM

msmpanfrost etnaviv ...

Mesa3D

EGLGLX

DRI

Gallium3D

State Trackers

Driver Interface

panfrost etnaviv ... freedreno

t
u
r
n
i
p

a
n
v

i915

OpenGL
Ecosystem

Vulkan

Vulkan Ecosystem

WSI

ninedd_function_table / dri

GL Dispatcher

31

Conclusion

32

Nice overview, but what’s next?
● The GPU topic is quite vast

● Start small

– Choose a driver

– Find a feature that’s missing or buggy

– Stick to it until you get it working
● Getting a grasp on GPU concepts/implementation takes time
● Don’t give up

33

Useful readings
● Understanding how GPUs work is fundamental:

– https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-

pipeline-2011-index/

– https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www/lec_slides/

lec19.pdf

– Search ”how GPUs work” on Google ;-)

● Mesa source tree is sometimes hard to follow, refer to the doc: https://mesa-

docs.readthedocs.io/en/latest/sourcetree.html
● And the DRM kernel doc can be useful too: https://01.org/linuxgraphics/gfx-

docs/drm/gpu/index.html

34

Q & A
Thank you!

(Psst, we’re hiring!)

35

Backup Slides

36

Stalls on Memory Accesses
instruction flow

arithmethic
instruction

load

store

execution on a
GPU core

...

...

37

Avoid ld/st stalls: Multi-threading

arithmethic
instruction

load

store

T1

executing

t

T2

T1 T2

T1 T2

T1 T2

T1 T2

38

SIMD & Conditional branches: Ouch!

ALU ALU ALU ALU

Instruction Fetch/Decode

ctx ctx ctx ctx

instruction flowALUs

(a x b) + c;

if (x < 0)

a + c;

else

a - b;

SIMD

39

Kernel Drivers: Memory Management
● Two Frameworks

– GEM: Graphics Execution Manager

– TTM: Translation Table Manager

● GPU drivers using GEM
– Should provide an ioctl() to allocate Buffer Objects (BOs)

– Releasing BOs is done through a generic ioctl()

– Might provide a way to do cache maintenance operations on a BO

– Should guarantee that BOs referenced by a submitted Command Stream

are properly mapped GPU-side

40

Kernel Drivers: Scheduling
● Submission != Immediate execution

– Several processes might be using the GPU in parallel

– The GPU might already be busy when the request comes in

● Submission == Queue the cmdstream

● Each driver has its own ioctl() for that

● Userspace driver knows inter-cmdstream dependencies

● Scheduler needs to know about those constraints too

● DRM provides a generic scheduling framework: drm_sched

41

Userspace/Kernel Driver Synchronization
● Userspace driver needs to know when the GPU is done executing

a cmdstream

● Hardware reports that through an interrupt

● Information has to be propagated to userspace

● Here come fences: objects allowing one to wait on job

completion

● Exposed as syncobjs objects to userspace

● fences can also be placed on BOs

42

Mesa: Shader Compilation
● Compilation is a crucial aspect
● Compilation usually follows the following steps

– Shader Programming Language -> Generic Intermediate Representation

(IR)

– Optimization in the generic IR space

– Generic IR -> GPU specific IR

– Optimization in the GPU specific IR space

– Byte code generation
● Note that you can have several layers of generic IR

43

Mesa: Shader Compilation
GLSL HLSL

Shader Programming
Languages

Intermediate
Representations

SPIR-VGLSL IR

NIRTGSI

Driver
Compilers

MIR
(Midgard IR)

IR3
(Adreno IR)

......
NV50 IR

(Nouveau IR)

NV50
bytecode

MIR
bytecode

IR3
bytecode

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

