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Disclaimer

● I am not (yet) an experienced Graphics developer
– Take my words with a grain of salt

– Please correct me if I’m wrong

Source: https://me.me/i/every-master-was-once-a-beginner-success-foundation-well-said-16284942
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What is this talk about?
● This presentation is about

– Explaining what GPUs are and how they work

– Providing a brief overview of the Linux Open Source Graphics stack

● This presentation is not about
– Teaching you how to develop a GPU driver

– Teaching you how to use Graphics APIs (OpenGL/Vulkan/D3D)
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The Graphics Pipeline
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The Geometry Stage
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The Rasterizer Stage
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GPU Internals
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GPU Internals
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Let’s go massively parallel!
● Why?

– Vertices, normals, fragments can be processed independently

– We have a lot of them (complex scene, complex models, high resolution)

– We want real-time rendering

● How?
– SIMD (Single Instruction Multiple Data)

– Shared dedicated units for complex/specialized tasks

– No fancy CPU stuff like out-of-order control logic, smart pre-fetcher, branch 

predictors, ...
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Parallization, how hard can it be?

SIMD + lot of cores: we’re done, right?
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Parallization, how hard can it be?

Source: http://devhumor.com/media/multithreaded-programming
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Parallization, how hard can it be?

● Stalls caused by memory access
– Add caches

– Multi-threading

● SIMD: try to get all ALUs busy
– Avoid conditional branches

– Try to pack similar operation together
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Interaction with your GPU



16

CPU: Hey GPU, listen/talk to me please!

● The CPU is in charge of all apps running on a machine, 
including graphics apps

● The CPU needs a way to send requests to/get results 
from the GPU

● Huge amount of data needs to be exchanged 
(vertices, framebuffers, textures, …)
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CPU: Hey GPU, listen/talk to me please!

● How?
– Put everything in memory

– Set of operations to execute is also stored in memory (frequently called 

command stream)

– Once everything is in memory, ask the GPU to execute what we prepared

– Let the GPU inform us when it’s done
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The Linux Graphics Stack
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The Big Picture
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The Graphics API: What are they?
● Entry points for Graphics Apps/Libs
● Abstract the GPU pipeline configuration/manipulation
● You might have the choice

– OpenGL/OpenGLES: Well established, well supported and widely used

– Vulkan: Modern API, this is the future, but not everyone uses/supports it yet

– Direct3D: Windows Graphics API (version 12 of the API resembles the 

Vulkan API)
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The Graphics API: Shaders

● Part of the pipeline is programmable
– Separate Programming Language: GLSL or HLSL

– Programs are passed as part of the pipeline configuration...

– ... and compiled by drivers to generate hardware-specific bytecode
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The Graphics API: OpenGL(ES) vs Vulkan
● Two philosophies:

– OpenGL tries to hide as much as possible the GPU internals

– Vulkan provides fine grained control

– Vulkan provides a way to record operations and replay them

– More work for the developer, less work for the CPU

● Vulkan applications are more verbose, but
– Vulkan verbosity can be leveraged by higher-level APIs

– Drivers are simpler

– Improved perfs on CPU-bound workloads
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The Kernel/Userspace Driver Separation

● GPUs are complex beasts → drivers are complex too:
– We don’t want to put all the complexity kernel side

– Not all code needs to run in a privileged context

– Debugging in userspace is much easier

– Licensing issues (for closed source drivers)
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Kernel Drivers
● Kernel drivers deal with

– Memory

– Command Stream submission/scheduling

– Interrupts and Signaling

● Kernel drivers interfaces with open-source userspace drivers live 

in Linus’ tree: drivers/gpu/drm/

● Kernel drivers interfacing with closed-source userspace drivers 

are out-of-tree
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Userspace Driver: Roles
● Exposing one or several Graphics API

– Maintaining the API specific state machine (if any)

– Managing off-screen rendering contexts (if any)

– Compiling shaders into hardware specific bytecode

– Creating, populating and submitting command streams

● Interacting with the Windowing System
– Managing on-screen rendering contexts

– Binding/unbinding render buffers

– Synchronizing on render operations
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Mesa: Open Source Userspace Drivers
● 2 Graphics APIs 2 different approaches:
● GL:

– Mesa provides a frontend for GL APIs (libGL(ES))

– GL Drivers implement the DRI driver interface

– Drivers are shared libs loaded on demand
● Vulkan:

– Khronos has its own driver loader (Open Source)

– Mesa just provides Vulkan drivers

– No abstraction for Vulkan drivers, code sharing through libs
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Mesa State Tracking: Gallium
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Mesa State Tracking: Vulkan
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Conclusion
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Nice overview, but what’s next?
● The GPU topic is quite vast

● Start small

– Choose a driver

– Find a feature that’s missing or buggy

– Stick to it until you get it working
● Getting a grasp on GPU concepts/implementation takes time
● Don’t give up
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Useful readings
● Understanding how GPUs work is fundamental:

– https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-

pipeline-2011-index/

– https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www/lec_slides/

lec19.pdf

– Search ”how GPUs work” on Google ;-)

● Mesa source tree is sometimes hard to follow, refer to the doc: https://mesa-

docs.readthedocs.io/en/latest/sourcetree.html
● And the DRM kernel doc can be useful too: https://01.org/linuxgraphics/gfx-

docs/drm/gpu/index.html
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Q & A
Thank you!

(Psst, we’re hiring!)
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Backup Slides
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Avoid ld/st stalls: Multi-threading
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SIMD & Conditional branches: Ouch!
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Kernel Drivers: Memory Management
● Two Frameworks

– GEM: Graphics Execution Manager

– TTM: Translation Table Manager

● GPU drivers using GEM
– Should provide an ioctl() to allocate Buffer Objects (BOs)

– Releasing BOs is done through a generic ioctl()

– Might provide a way to do cache maintenance operations on a BO

– Should guarantee that BOs referenced by a submitted Command Stream 

are properly mapped GPU-side
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Kernel Drivers: Scheduling
● Submission != Immediate execution

– Several processes might be using the GPU in parallel

– The GPU might already be busy when the request comes in

● Submission == Queue the cmdstream

● Each driver has its own ioctl() for that

● Userspace driver knows inter-cmdstream dependencies

● Scheduler needs to know about those constraints too

● DRM provides a generic scheduling framework: drm_sched
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Userspace/Kernel Driver Synchronization
● Userspace driver needs to know when the GPU is done executing 

a cmdstream

● Hardware reports that through an interrupt

● Information has to be propagated to userspace

● Here come fences: objects allowing one to wait on job 

completion

● Exposed as syncobjs objects to userspace

● fences can also be placed on BOs
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Mesa: Shader Compilation
● Compilation is a crucial aspect
● Compilation usually follows the following steps

– Shader Programming Language -> Generic Intermediate Representation 

(IR)

– Optimization in the generic IR space

– Generic IR -> GPU specific IR

– Optimization in the GPU specific IR space

– Byte code generation
● Note that you can have several layers of generic IR
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Mesa: Shader Compilation
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