

Wi-Fi 6 (Formerly IEEE 802.11ax) Deep Dive

Presented by

Marcel Ziswiler Software Team Lead -Embedded Linux BSP Toradex

WITH YOU TODAY....

- Joined Toradex 2011
- Spearheaded Embedded Linux Adoption
- Introduced Upstream First Policy
- Top 10 U-Boot Contributor
- Top 10 Linux Kernel ARM SoC Contributor
- Industrial Embedded Linux Platform Torizon Fully Based on Mainline Technology
 - Mainline U-Boot with Distroboot
 - KMS/DRM Graphics with Etnaviv & Nouveau
 - OTA with OSTree
 - Docker resp. Podman

Marcel Ziswiler
Software Team Lead - Embedded Linux BSP
Toradex

WHAT WE'LL COVER TODAY...

- Introduction to Wi-Fi 6
- Wi-Fi 6 OpenWrt
 Access Point (AP)/Router Landscape
 - Belkin RT3200/Linksys E8450 (MediaTek based)
 - Xiaomi Mi AioT Router AX3600 (Qualcomm based)
- Wi-Fi 6 Clients
 - Intel AX210NGW
 - MediaTek MT7921K
 - Qualcomm QCA6391
 - Realtek RTL8852AE
- Real-Life Configurations and Benchmark Demo Use Cases

Introduction to Wi-Fi 6

Embedded. Computing.

- Former IEEE 802.11ax standard
- Ratified early last year (February 1, 2021)
- Evolving Wi-Fi performance envelope (see diagram)
- However, developed to increase both overall efficiency and capacity
- High-efficiency Wi-Fi
- Overall improvements enhancing throughput per area targeting dense environments
- Higher spectral efficiency
- **Wi-Fi 6E**: operation in unlicensed 6 GHz band

Source: Liang Jin, Spirent

- Orthogonal frequency-division multiple access (OFDMA)
 - Spectrum broken up into groups of sub-carriers called Resource Units (Rus)
 - Allows sharing each frame among users, improving efficiency, reducing contention

Wi-Fi 6 Router with OFDMA Support Operation of the process of the

Data from multiple users can be transmitted at the same time

- Benefits at 2.4 GHz: managing low-rate IoT sensor devices
- 160 MHz bandwidth channels

- Higher order 1024 quadrature amplitude modulation (1024-QAM)
 - Technique packing digital bits into radio signals
 - Using two so-called carriers (sine-waves) phase-shifted by 90 degrees (a quarter out-of-phase)
 - Modulated with output and phase variations (example 4x4=16-QAM)
 - In case of 1024-QAM space is 32x32
 - Delivering increased throughput
 - Up to 25% peak data rate increase over previous 256-QAM in Wi-Fi 5

Phase (degrees)

- Up- and down-link multi-user multiple-input/multiple-output (MU-MIMO)
 - 8 streams in 5 GHz plus 4 streams in 2.4 GHz band for a total of up to 12 streams significantly boosting spectrum use
 - Works best with 8x8 channel state information (CSI) feedback aka sounding, but not mandatory
 - Best for stationary clients, but works with clients in motion as well
 - Flexibility: dual-band 8x8 may also operate as tri-band 4x4
 - Of course, the more streams, the more radios, the more power hungry it gets (and the more expensive)
 - Most client devices use 2x2 antenna configurations
 - IoT/smart devices do not all require high data rates, mostly 2.4 GHz band with 1x1 antenna configuration

Embedded. Computing.

- Target Wake Time (TWT)
 - Orchestrating network traffic to minimize unnecessary chatter
 - Allows for different devices to schedule flexible check-in freque
 - Reduces contention
 - Dramatically reduces power consumption
- Basic Service Set (BSS) Coloring
 - Increasing capacity in dense environments requires frequency reuse across BSS
 - Technique to color aka mark traffic to be prioritized (basically a number included in PHY header)
 - Allows ignoring traffic on same frequency likely communicating due to overlapping Basic Service Sets (OBSS)
 - Improves reliability in dense environments

- Wi-Fi protected access 3 (WPA3) security protocol
 - Using pre-shared keys (PSKs) is inherently problematic due to the sharing part
 - Wi-Fi protected setup (WPS) used a weak 23-bit pin as part of the sign-up process
 - Simultaneous authentication of equals (SAE): more secure initial key exchange in personal mode
 - Wi-Fi device provisioning protocol (DPP): grant access to network using QR codes or NFC tags
 - 256-bit Galois/Counter Mode Protocol (GCMP-256)
 - 384-bit Hashed Message Authentication Mode (HMAC)
 - However, only 128-bit encryption mandatory in WPA3-Personal mode (192-bit in WPA3-Enterprise)
 - Wi-Fi certified enhanced open: using strong encryption even connecting to an open network
- 20-MHz-only channels targeting IoT sensors to use spectrum more efficiently
- Extending new features to congested 2.4 GHz band

Wi-Fi 6 OpenWrt Access Point (AP)/ Router Landscape

- Only a few MediaTek based models officially supported since OpenWrt 21.02 (more in master/snapshots)
- Older RAMIPS MT7621AT or newer Arm MT7622BV based in combination with MT7911/MT7915 Wi-Fi 6 radios
- MediaTek MT7621AT
 - Dual 32-bit MIPS1004Kc core @ 880 MHz
 - Integrated 5 port GbE switch + RGMII

- Network accelerator, HW NAT
- 3x PCIe, 1x USB 3.0, 1x USB 2.0

Wi-Fi 6 OpenWrt Access Point (AP)/ Router Landscape (cont.)

MT6380

MediaTek MT7622BV

- Dual 64-bit Arm Cortex-A53 core @ 1350 MHz
- Integrated 2.4 GHz 4x4 Wi-Fi 4 (formerly 802.11n)/ Bluetooth 5.0
- Integrated 5 port Fast Ethernet switch,
 1x HSGMII (1/2.5 Gbps) + RGMII
- Network accelerator, HW NAT
- 2x PCle Gen2, 1x USB 3.0, 1x USB 2.0 (device/host)
- SATA 3.0/eSATA Gen2

MT7622A Functional Blocks

Wi-Fi 6 OpenWrt Access Point (AP)/ Router Landscape (cont.)

MediaTek MT7531BE

- 5 port GbE switch
- 2500BASE-X for CPU port

MediaTek MT7911/MT7915

- Dual-band dual-concurrent (DBDC) 4x4 (MT7915A) or 2x2 (MT7915D) Wi-Fi 6 (formerly 802.11ax)
- 20/40 MHz bandwidth in 2.4 GHz and 20/40/80 MHz bandwidth in 5 GHz
- MAC/Base-band processor (BBP, e.g. requires external RFIC/FEM)
- Bluetooth 5.1 (MT7915 only)
- 32-bit RISC MCU
- PCle 2.1

MediaTek MT7975

Radio Frequency Integrated Circuit (RFIC)/Front-End Module (FEM)

Belkin RT3200/Linksys E8450 (MediaTek based)

- MediaTek MT7622BV SoC
 - Dual 64-bit Arm Cortex-A53 core @ 1350 MHz
 - Integrated 2.4 GHz 4x4 Wi-Fi 4 (formerly 802.11n)
- Fidelix FM35Q1GA-IB
 - 128 MB SPI-NAND flash (requires ECC and wear leveling)
- Winbond W634GG6NB-12
 - 512 MB DDR3 RAM
- 1x USB 2.0 host port
- MediaTek MT7915AN
 - 5 GHz 4x4 Wi-Fi 6 (formerly 802.11ax)
- MediaTek MT7531BE
 - 5 port GbE switch (one of which usually WAN, rest LAN)
- 12 V DC, 2.0 A (regular barrel connector)

Belkin RT3200/Linksys E8450 (MediaTek based, cont.)

- Vendor firmware without proper flash ECC handling and wear leveling!
- UBI variant of OpenWrt requires replacing U-Boot with mainline version
- Maintainer created a convenient installer for this
- Remember to change Wi-Fi country code
- Change default CPU governor/scaling to avoid hangs on reboot
- Serial port header available (regular 3.3 V logic level)

Belkin RT3200/Linksys E8450

OpenWrt Status - System - Network	▼ Logout REFRESHING		
Status			
System			
Hostname	OpenWrt		
Model	Linksys E8450 (UBI)		
Architecture	ARMv8 Processor rev 4		
Target Platform	mediatek/mt7622		
Firmware Version	OpenWrt 22.03.0-rc3 r19378-9f415792e1 / LuCl openwrt-22.03 branch git-22.140.66268-ef99568		
Kernel Version	5.10.116		
Local Time	2022-05-21 23:37:58		
Uptime	0h 1m 23s		
Load Average	0.21, 0.08, 0.03		
Memory			
Total Available	412.39 MiB / 482.98 MiB (85%)		
Used	56.02 MiB / 482.98 MiB (11%)		
Cached	13.06 MiB / 482.98 MiB (2%)		

Belkin RT3200/Linksys E8450

Wireless Overview MediaTek MT7622 802.11bgn radio0 Scan Add Restart Device is not active SSID: OpenWrt2 | Mode: Master disabled Enable Edit Remove Wireless is disabled MediaTek MT7915E 802.11nacax radio1 Restart Scan Add Channel: 124 (5.620 GHz) | Bitrate: ? Mbit/s SSID: OpenWrt2 | Mode: Master --- dBm Remove Disable Edit BSSID: C4:41:1E:F8:96:F5 | Encryption: WPA3 SAE (CCMP)

Associated Stations

Network	MAC address	Host	Signal <i>I</i> Noise	RX Rate / TX Rate	
Master "OpenWrt2" (wlan1)	48:D8:90:FF:BD:94	fe80::80c0:e2f7:fb0a:1532	-56 dBm	1080.6 Mbit/s, 80 MHz, HE-MCS 10, HE-NSS 2 1020.6 Mbit/s, 80 MHz, HE-MCS 10, HE-NSS 2, HE-GI 1	Disconnect

Wi-Fi 6 OpenWrt Access Point (AP)/ Router Landscape (cont.)

- Support for Qualcomm based models is work in progress
- Qualcomm IPQ8071A (IPQ807x)
 - Quad 64-bit Arm Cortex-A53 core @ 1.4 GHz
 - Integrated dual-band dual-concurrent (DBDC) 4x4
 2.4 GHz and 4x4 5 GHz Wi-Fi 6 (formerly 802.11ax)
 - PCIe Gen3
 - Ethernet: 4x GbE, 2x 10GbE
 - USB 3.0

Wi-Fi 6 OpenWrt Access Point (AP)/ Router Landscape (cont.)

Embedded. Computing.

Qualcomm IPQ8075

- 5 port GbE transceiver aka PHY (not a switch)
- Two integrated SerDes
 - 1x PSGMII or QSGMII to MAC
 - 1x SGMII to MAC or fiber (optional combo with copper port 4)

Qualcomm QCN5024

- 4x4 2.4 GHz Wi-Fi 6 (formerly 802.11ax)
- PCle

Qualcomm QCN5054

- 4x4 5 GHz Wi-Fi 6 (formerly 802.11ax)
- PCIe

Qualcomm QCN9024

- 4x4 2.4, 5 GHz DBDC (80 MHz bandwidth)
- PCIe Gen3

Xiaomi Mi AioT Router AX3600

Embedded. Computing.

(Qualcomm based)

- **Qualcomm IPQ8071A SoC**
 - Quad 64-bit Arm Cortex-A53 core @ 1.4 GHz
- Winbond W29N02GZSIBA
 - 256 MB raw NAND flash
- EtronTech EM6HE16EWAKG-10H
 - 512 MB DDR3L RAM
- **Qualcomm PMP8074** power management chip (PMIC)
- **Qualcomm Atheros QCA8075**
 - 4 port GbE PHY (one of which usually WAN, rest LAN)
- Qualcomm QCA9889 AloT exclusive dual-band 1x1 Wi-Fi 5 (formerly 802.11ac wave 2) chip
- **Qualcomm QCN5024** 2.4 GHz 2x2 Wi-Fi 6 (formerly 802.11ax)
- **Qualcomm QCN5054** 5 GHz 4x4 Wi-Fi 6 (formerly 802.11ax)
- 12 V DC, 2.0 A (smaller than usual barrel connector)

Xiaomi Mi AioT Router AX3600 (Qualcomm based, cont.)

- Vendor U-Boot has serial input aka RX locked
- Vendor firmware has SSH locked
- Known exploits to unlock
- Experimental builds may be installed
- Ath11k is very memory hungry
- Stock flash layout makes only use of half the space
- Serial port header available (1.8 V logic level!)

Xiaomi Mi AioT Router AX3600

OpenWrt Status → System → Network	Logout
Status	
System	
Hostname	OpenWrt
Model	Xiaomi AX3600
Architecture	ARMv8 Processor rev 4
Target Platform	ipq807x/generic
Firmware Version	OpenWrt SNAPSHOT r0-4a73ee4 / LuCl Master git-22.137.71281-d6dbedd
Kernel Version	5.15.40
Local Time	2022-05-30 18:26:34
Uptime	0h 9m 11s
Load Average	0.17, 0.27, 0.12
Memory	
Total Available	240.15 MiB / 407.46 MiB (58%)
Used	157.70 MiB / 407.46 MiB (38%)
Cached	21.48 MiB / 407.46 MiB (5%)

Xiaomi Mi AioT Router AX3600

Gnome NetworkManager

Signal Strength Good

Link speed 1200 Mb/s (5.6 GHz)

Security WPA3

OpenWrt Status

radio1

Type: 802.11nacax

Channel: 124 (5.620 GHz)

Bitrate: 1200 Mbit/s

SSID: OpenWrt2

Mode: Master

BSSID: 28:D1:27:4E:55:84

Encryption: WPA3 SAE (CCMP)

Associations: 1

Associated Stations

Network	MAC address	Host	Signal / Noise	RX Rate / TX Rate	
Master "OpenWrt2" (wlan1)	FC:B3:BC:44:21:B8	?	-56/-105 dBm	1200.9 Mbit/s, 80 MHz, HE-MCS 11, HE-NSS 2 1200.9 Mbit/s, 80 MHz, HE-MCS 11, HE-NSS 2	Disconnect

Wi-Fi 6 Clients

Intel AX210NGW

- 2x2 2.4, 5, 6 GHz (160MHz bandwidth)
- Wi-Fi 6E (formerly 802.11ax) via PCle
- Bluetooth 5.3 via USB
- M.2 2230 form factor, key A+E (also available as M.2 1216)
- Linux driver: iwlwifi
 - Initial Wi-Fi 6 support merged in July 2018
 - AX210NGW support merged in February 2019
- Kernel configuration: CONFIG_WLAN_VENDOR_INTEL, CONFIG_IWLWIFI, CONFIG_IWLMVM
- Firmware: iwlwifi-ty-a0-gf-a0-72.ucode, iwlwifi-ty-a0-gf-a0.pnvm
- Module parameters (e.g. put in /etc/modprobe.d/iwlwifi.conf)
 - options iwlmvm power_scheme=1
 - options iwlwifi power_save=0
- Trouble getting it to run stable on non x86 embedded systems

Wi-Fi 6 Clients (cont.)

MediaTek MT7921K

- 2x2 2.4, 5, 6 GHz (160 MHz bandwidth)
- Wi-Fi 6E (formerly 802.11ax) via PCIe
- Bluetooth 5.0 LE via USB
- M.2 2230 form factor, key A+E
- Linux driver: mt76
 - Initial Wi-Fi 6 support merged in May 2020
 - MT7921K support merged in January 2021
- Kernel configuration: CONFIG_WLAN_VENDOR_MEDIATEK, CONFIG_MT7921_COMMON, CONFIG_MT7921E
- Firmware: mediatek/{WIFI_MT7961_patch_mcu_1_2_hdr.bin | WIFI_RAM_CODE_MT7961_1.bin}
- Stable and highest performance (on x86_64)

Wi-Fi 6 Clients (cont.)

Qualcomm QCA6391

- 2x2 2.4, 5 GHz DBDC (80 MHz bandwidth)
- Wi-Fi 6 (formerly 802.11ax) via PCIe
- Bluetooth 5.1 LE via UART/PCM
- M.2 2230 form factor, key E (rather unusual)
- Linux driver: ath11k
 - Initial Wi-Fi 6 support merged in November 2019
 - QCA6391 support merged in August 2020
- Kernel configuration: CONFIG_ATH_COMMON, CONFIG_WLAN_VENDOR_ATH, CONFIG_ATH11K, CONFIG_ATH11K_PCI, CONFIG_CRYPTO_MICHAEL_MIC
- Firmware: ath11k/QCA6390/hw2.0/board-2.bin
- Stable and good performance

Wi-Fi 6 Clients (cont.)

- Realtek Semiconductor RTL8852AE
 - 2x2 2.4, 5 GHz DBDC (80 MHz bandwidth)
 - Wi-Fi 6 (formerly 802.11ax) via PCIe
 - Bluetooth 5.0 via USB
 - M.2 2230 form factor, key A+E
 - Linux driver: rtw89
 - Merged in October 2021
 - Kernel configuration: CONFIG_RTW89, CONFIG_RTW89_8852AE
 - Firmware: rtw89/rtw8852a_fw.bin
 - Have yet to try that one but reviews are rather mixed

Real-Life Configurations and Benchmark Demo Use Cases

- Initial support for Wi-Fi 6 (formerly 802.11ax) was merged into Linux kernel 4.19
- Only wpa_supplicant v2.10 (2022-01-16) added support for SAE (WPA3-Personal) AP mode configuration
- Requires OpenEmbedded/Yocto Project master branch
- Used two systems for my basic testing:
 - Lenovo Thinkpad T470p, Intel Core i7 (x86_64), 32 GB RAM, running Fedora 36 Silverblue
 - Verdin iMX8M Mini running image from OpenEmbedded/Yocto Project master branches with mainline Linux kernel
- Previously introduced two OpenWrt routers
- Previously introduced three M.2 cards
- 2 meter distance between client/router
- Make sure to set proper Wi-Fi country code
- 5 GHz connection may require time for initial radar detection in dynamic frequency selection (DFS) to complete
- Iperf3 from client to beefy server connected through Wi-Fi router
- AX210NGW kept crashing after a few seconds on Arm platforms (tried Apalis TK1 as well)

Real-Life Configurations and Benchmark Demo Use Cases (cont.)

Real-Life Configurations and Benchmark Demo Use Cases (cont.)

- Download/upload (e.g. iperf3 -R)
- Values in Mbits/sec
- Wi-Fi 5 shows much more consistent results across different clients/routers (from my experience)
- Likely not all clients/routers support all Wi-Fi 6 features (at least by default, further tweaking required?)
- Some Linux drivers are rather new, OpenWrt support also new resp. even still WIP
- 2.4 GHz: about 2x speed increase over Wi-Fi 5, 5 GHz: speed increase marginal resp. highly dependent

x86_64: Client/Router	RT3200	AX3600	Arm: Client/Router	RT3200	AX3600
AX210NGW	344/73	417/72	AX210NGW	N/A	N/A
MT7921K	693/229	826/225	MT7921K	171/213	186/220
QCA6391	549/ <mark>236</mark>	575/183	QCA6391	640/216	607/174

References

- OpenWrt Wi-Fi 6 Devices
 https://openwrt.org/toh/views/toh-available-16128-ax-wifi
- MediaTek MT7622
 https://www.mediatek.com/products/home-networking/mt7622
- OpenWrt on Belkin RT3200 (Linksys E8450)
 https://openwrt.org/toh/linksys/e8450
- Qualcomm Networking Pro 600 Platform (IPQ8071A)
 https://www.qualcomm.com/products/application/networking/qualcomm-networking-pro-600-platform
- OpenWrt on Xiaomi AX3600
 https://openwrt.org/inbox/toh/xiaomi/xiaomi_ax3600
- Intel Wi-Fi 6E AX210
 https://ark.intel.com/content/www/us/en/ark/products/204836/intel-wifi-6e-ax210-gig.html
- MediaTek Filogic 330
 https://www.mediatek.com/products/broadband-wifi/mediatek-filogic-330
- Qualcomm Wi-Fi 6
 https://www.qualcomm.com/products/application/networking/features/wi-fi-6
- Realtek Semiconductor RTL8852AE
 https://www.realtek.com/en/products/product-hits/item/high-speed-wireless-internet-access

THANK YOUFOR YOUR INTEREST

www.toradex.com developer.toradex.com community.toradex.com labs.toradex.com

