
Embedded Linux Conference 2016

GNU Autotools: a tutorial

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/99

Thomas Petazzoni

I CTO and Embedded Linux engineer at Free Electrons
I Embedded Linux specialists.
I Development, consulting and training.
I http://free-electrons.com

I Contributions
I Kernel support for the Marvell Armada ARM SoCs

from Marvell
I Major contributor to Buildroot, an open-source, simple

and fast embedded Linux build system

I Living in Toulouse, south west of France

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/99

http://free-electrons.com

When talking about autotools, most people think:

But this is a German book, really about the autotools!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

When talking about autotools, most people think:

But this is a German book, really about the autotools!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

When talking about autotools, most people think:

But this is a German book, really about the autotools!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

Autotools, why?

I Yes, the autotools are old

I Yes, they have their pain points

I Yes, people hate them

I Due to this, people tend to roll-their-own, and roll-their-own build systems tend to
be even worse than the autotools

I But
I They bring a number of very useful benefits
I They are not that complicated when you take the time to get back to the basics

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/99

Autotools: benefits

I Standardized build procedure and behavior: users know how to build things that
use the autotools

I Good for human users, but also for build systems

I Proper handling for diverted installation
I I.e. build with prefix=/usr, but divert the installation to another directory. Needed

for cross-compilation.

I Built-in support for out-of-tree build

I Built-in handling of dependencies on header files

I Support for cross-compilation aspects
I Somewhat esoteric, but standardized languages used

I Learn once, use for many projects
I New contributors are more likely to know the autotools than your own custom thing

I Of course, there are alternatives, CMake being the most interesting and widely
used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/99

Disclaimer

I I am not an autotools expert

I I don’t know the internals of autotools, only their usage
I This tutorial will only cover the basics aspects

I Sufficient to understand the autoconf/automake documentation
I Sufficient to understand most existing build systems

I Won’t cover many advanced aspects

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/99

Autotools tutorial: agenda

1. User point of view

2. autoconf basics

3. automake basics

4. autoconf advanced

5. automake advanced

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/99

User point of view

User point of view
Thomas Petazzoni

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/99

Using autotools based packages

I The basic steps to build an autotools based software component are:

1. Configuration
./configure

Will look at the available build environment, verify required dependencies, generate
Makefiles and a config.h

2. Compilation
make

Actually builds the software component, using the generated Makefiles.
3. Installation

make install

Installs what has been built.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/99

What is configure doing?

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/99

Standard Makefile targets

I all, builds everything. The default target.

I install, installs everything that should be installed.

I install-strip, same as install, but then strips debugging symbols

I uninstall

I clean, remove what was built

I distclean, same as clean, but also removes the generated autotools files

I check, run the test suite

I installcheck, check the installation

I dist, create a tarball

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/99

Standard filesystem hierarchy

I prefix, defaults to /usr/local
I exec-prefix, defaults to prefix

I bindir, for programs, defaults to exec-prefix/bin
I libdir, for libraries, defaults to exec-prefix/lib

I includedir, for headers, defaults to prefix/include
I datarootdir, defaults to prefix/share

I datadir, defaults to datarootdir
I mandir, for man pages, defaults to datarootdir/man
I infodir, for info documents, defaults to datarootdir/info

I sysconfdir, for configuration files, defaults to prefix/etc
I --<option> available for each of them

I E.g: ./configure --prefix=~/sys/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/99

Standard configuration variables

I CC, C compiler command

I CFLAGS, C compiler flags

I CXX, C++ compiler command

I CXXFLAGS, C++ compiler flags

I LDFLAGS, linker flags

I CPPFLAGS, C/C++ preprocessor flags

I and many more, see ./configure --help

I E.g: ./configure CC=arm-linux-gcc

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/99

System types: build, host, target

I autotools identify three system types:
I build, which is the system where the build takes place
I host, which is the system where the execution of the compiled code will take place
I target, which is the system for which the program will generate code. This is only

used for compilers, assemblers, linkers, etc.

I Corresponding --build, --host and --target configure options.
I They are all automatically guessed to the current machine by default
I --build, generally does not need to be changed
I --host, must be overridden to do cross-compilation
I --target, needs to be overridden if needed (to generate a cross-compiler, for

example)

I Arguments to these options are configuration names, also called system tuples

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/99

System type: native compilation example

Demo
(based on the kmod source code)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/99

Cross-compilation

I By default, autotools will guess the host machine as being the current machine

I To cross-compile, it must be overridden by passing the --host option with the
appropriate configuration name

I By default, autotools will try to use the cross-compilation tools that use the
configuration name as their prefix.

I If not, the variables CC, CXX, LD, AR, etc. can be used to point to the
cross-compilation tools.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/99

Out of tree build

I autotools support out of tree compilation by default

I Consists in doing the build in a directory separate from the source directory
I Allows to:

I Build different configurations without having to rebuild from scratch each time.
I Not clutter the source directory with build related files

I To use out of tree compilation, simply run the configure script from another
empty directory

I This directory will become the build directory

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/99

Out of tree build: example

Demo

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/99

Diverted installation with DESTDIR

I By default, make install installs to the directories given in --prefix and
related options.

I In some situations, it is useful to divert the installation to another directory
I Cross-compilation, where the build machine is not the machine where applications

will be executed.
I Packaging, where the installation needs to be done in a temporary directory.

I Achieved using the DESTDIR variable.

Demo!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/99

--prefix or DESTDIR ?

I --prefix and DESTDIR are often misunderstood

I --prefix is the location where the programs/libraries will be placed when
executed on the host machine

I DESTDIR is a way of temporarily diverting the installation to a different location.
I For example, if you use --prefix=/home/<foo>/sys/usr, then binaries/libraries

will look for icons in /home/<foo>/sys/usr/share/icons
I Good for native installation in /home/<foo>/sys
I Bad for cross-compilation where the binaries will ultimately be in /usr

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/99

--prefix or DESTDIR use cases

I Native compilation, install system-wide in /usr

$./configure --prefix=/usr

$ make

$ sudo make install

I Native compilation, install in a user-specific directory:

$./configure --prefix=/home/<foo>/sys/

$ make

$ make install

I Cross-compilation, install in /usr, diverted to a temporary directory where the
system for the target is built

$./configure --prefix=/usr

$ make

$ make DESTDIR=/home/<foo>/target-rootfs/ install

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/99

Analyzing issues

I autoconf keeps a log of all the tests it runs in a file called config.log

I Very useful for analysis of autoconf issues

I It contains several sections: Platform, Core tests, Running config.status, Cache
variables, Output variables, confdefs.h

I The end of the Core tests section is usually the most interesting part
I This is where you would get more details about the reason of the configure script

failure

I At the beginning of config.log you can also see the ./configure line that was
used, with all options and environment variables.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/99

autotools: autoconf and automake

I The configure script is a shell script generated from configure.ac by a
program called autoconf

I configure.ac used to be named configure.in but this name is now deprecated
I Written in shell script, augmented with numerous m4 macros

I The Makefile.in are generated from Makefile.am files by a program called
automake

I Uses special make variables that are expanded in standard make constructs

I Some auxilliary tools like autoheader or aclocal are also used
I autoheader is responsible for generating the configuration header template,

config.h.in

I Generated files (configure, Makefile.in, Makefile) should not be modified.
I Reading them is also very difficult. Read the real source instead!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/99

Overall organization

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/99

Cache variables

I Each test done by a configure.ac script is associated with a cache variable

I The list of such variables and their values is visible in config.log:

Cache variables.

ac_cv_build=x86_64-unknown-linux-gnu

ac_cv_c_compiler_gnu=yes

[...]

ac_cv_path_SED=/bin/sed

I If the autodetected value is not correct for some reason, you can override any of
these variables in the environment:

$ ac_cv_path_SED=/path/to/sed ./configure

I This is sometimes useful when cross-compiling, since some tests are not always
cross-compilation friendly.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/99

Distribution

I In general:
I When a software is published as a tarball, the configure script and Makefile.in

files are already generated and part of the tarball.
I When a software is published through version control system, only the real sources

configure.ac and Makefile.am are available.

I There are some exceptions (like tarballs not having pre-generated
configure/Makefile.in)

I Do not version control generated files!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/99

Regenerating autotools files: autoreconf

I To generate all the files used by autotools, you could call automake, autoconf,
aclocal, autoheader, etc. manually.

I But it is not very easy and efficient.

I A tool called autoreconf automates this process
I Useful option: -i or --install, to ask autoreconf to copy missing auxiliary files

I Always use autoreconf!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/99

autoconf basics

autoconf basics
Thomas Petazzoni

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/99

configure.ac language

I Really a shell script

I Processed through the m4 preprocessor
I Shell script augmented with special constructs for portability:

I AS_IF instead of shell if ... then .. fi
I AS_CASE instead of shell case ... esac
I etc.

I autoconf provides a large set of m4 macros to perform most of the usual tests

I Make sure to quote macro arguments with []

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/99

Minimal configure.ac

configure.ac

AC_INIT([hello], [1.0])

AC_OUTPUT

I AC_INIT
I Every configure script must call AC_INIT before doing anything else that produces

output.
I Process any command-line arguments and perform initialization and verification.
I Prototype:

AC_INIT (package, version, [bug-report], [tarname], [url])

I AC_OUTPUT
I Every configure.ac, should finish by calling AC_OUTPUT.
I Generates and runs config.status, which in turn creates the makefiles and any

other files resulting from configuration.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/99

Minimal configure.ac example

Demo 01

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/99

Additional basic macros

I AC_PREREQ
I Verifies that a recent enough version of autoconf is used
I AC_PREREQ([2.68])

I AC_CONFIG_SRCDIR
I Gives the path to one source file in your project
I Allows autoconf to check that it is really where it should be
I AC_CONFIG_SRCDIR([hello.c])

I AC_CONFIG_AUX_DIR
I Tells autoconf to put the auxiliary build tools it requires in a different directory,

rather than the one of configure.ac
I Useful to keep cleaner build directory

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/99

Additional basic macros

Demo 02

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/99

Checking for basic programs

I AC_PROG_CC, makes sure a C compiler is available

I AC_PROG_CXX, makes sure a C++ compiler is available

I AC_PROG_AWK, AC_PROG_GREP, AC_PROG_LEX, AC_PROG_YACC, etc.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/99

Checking for basic programs: example

Demo 03

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/99

AC CONFIG FILES

I AC_CONFIG_FILES (file..., [cmds], [init-cmds])

I Make AC_OUTPUT create each file by copying an input file (by default file.in),
substituting the output variable values.

I Typically used to turn the Makefile templates Makefile.in files into final
Makefile.

I Example:
AC_CONFIG_FILES([Makefile src/Makefile])

I cmds and init-cmds are rarely used, see the autoconf documentation for details.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/99

Output variables

I autoconf will replace @variable@ constructs by the appropriate values in files
listed in AC_CONFIG_FILES

I Long list of standard variables replaced by autoconf

I Additional shell variables declared in configure.ac can be replaced using
AC_SUBST

I The following three examples are equivalent:

AC_SUBST([FOO], [42])

FOO=42

AC_SUBST([FOO])

AC_SUBST([FOO])

FOO=42

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/99

AC CONFIG FILES example

Demo 04

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/99

configure.ac: a shell script

I It is possible to include normal shell constructs in configure.ac

I Beware to not use bashisms: use only POSIX compatible constructs

I Most configure scripts use directly shell constructs, but AS_ECHO, AS_IF, etc. are
available.

Demo 05 and 05b

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/99

Writing Makefile.in?

I At this point, we have seen the very basics of autoconf to perform the
configuration side of our software

I We could use AC_CONFIG_FILES to generate Makefile from Makefile.in

I However, writing a Makefile.in properly is not easy, especially if you want to:
I be portable
I automatically handle dependencies
I support conditional compilation, out-of-tree build, diverted installation,

cross-compilation, etc.

I For these reasons, Makefile.in are typically not written manually, but generated
by automake from a Makefile.am file

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/99

automake basics

automake basics
Thomas Petazzoni

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/99

Makefile.am language

I Really just a Makefile
I You can include regular make code

I Augmented with automake specific constructs that are expanded into regular
make code

I For most situations, the automake constructs are sufficient to express what needs
to be built

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/99

Makefile.am minimal example

I The minimal example of Makefile.am to build just one C file into a program is
only two lines:

Makefile.am

bin_PROGRAMS = hello

hello_SOURCES = main.c

I Will compile main.c to main.o

I And link hello.o into the hello executable

I Which will be installed in $prefix/bin

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/99

Enabling automake in configure.ac

I To enable automake usage in configure.ac, you need:
I A call to AM_INIT_AUTOMAKE
I Generate the Makefile using AC_CONFIG_FILES

I automake will generate the Makefile.in at autoreconf time, and configure will
generate the final Makefile

configure.ac

AC_INIT([hello], [1.0])

AM_INIT_AUTOMAKE([foreign 1.13])

AC_PROG_CC

AC_CONFIG_FILES([Makefile])

AC_OUTPUT

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/99

First automake demo

Demo 06

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/99

AM INIT AUTOMAKE

I AM_INIT_AUTOMAKE([OPTIONS])

I Interesting options:
I foreign, tells automake to not require all the GNU Coding Style files such as NEWS,

README, AUTHORS, etc.
I dist-bzip2, dist-xz, etc. tell automake which tarball format should be generated

by make dist
I subdir-objects tells automake that the objects are placed into the subdirectory of

the build directory corresponding to the subdirectory of the source file
I version, e.g 1.14.1, tells the minimal automake version that is expected

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/99

Makefile.am syntax

I An automake parsable Makefile.am is composed of product list variables:

bin_PROGRAMS = hello

I And product source variables:

hello_SOURCES = main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/99

Product list variables

[modifier-list]prefix_PRIMARY = product1 product2 ...

I prefix is the installation prefix, i.e. where it should be installed
I All *dir variables from autoconf can be used, without their dir suffix: use bin for

bindir
I E.g.: bindir, libdir, includedir, datadir, etc.

I PRIMARY describes what type of things should be built:
I PROGRAMS, for executables
I LIBRARIES, LTLIBRARIES, for libraries
I HEADERS, for publicly installed header files
I DATA, arbitrary data files
I PYTHON, JAVA, SCRIPTS
I MANS, TEXINFOS, for documentation

I After the = sign, list of products to be generated

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/99

Product source variables

[modifier-list]product_SOURCES = file1 file2 ...

I The product is the normalized name of the product, as listed in a product list
variable

I The normalization consists in replacing special characters such as . or + by _. For
example, libfoo+.a in a product list variable gives the libfoo__a_SOURCES

product source variable.

I _SOURCES is always used, it’s not like a configurable primary.
I Contains the list of files containing the source code for the product to be built.
I Both source files and header files should be listed.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/99

More complicated automake example

Demo 07

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/99

autoconf advanced

autoconf advanced
Thomas Petazzoni

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/99

Configuration header

I Very often, C/C++ code needs to know the result of certain tests done by the
configure script.

I A template C header file can be automatically generated by autoheader,
generally named config.h.in

I The final header file is generated by configure, generally named config.h

I Declared using AC_CONFIG_HEADERS

configure.ac extract

AC_CONFIG_HEADERS([config.h])

Example config.h

/* Define if the complete vga libraries (vga, vgagl) are installed */

/* #undef HAVE_LIBVGA */

/* Define to 1 if you have the <limits.h> header file. */

#define HAVE_LIMITS_H 1

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/99

AC DEFINE

I AC_DEFINE allows to create C definitions in the configuration header

I AC_DEFINE (variable, value, description)

configure.ac

AC_DEFINE([FOOBAR], [42], [This is the foobar value])

Demo 08

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/99

Checking for functions

I You may need to check if certain functions are available and/or meet certain
characteristics

I Family of AC_FUNC_* macros
I AC_FUNC_FORK, AC_FUNC_GETLOADAVG, AC_FUNC_MALLOC, etc.
I See autoconf manual for details

I AC_CHECK_FUNC[S] to check for generic functions
I AC_CHECK_FUNC (function, [action-if-found], [action-if-not-found])
I AC_CHECK_FUNCS (function..., [action-if-found], [action-if-not-

found])
I Results available

I ac_cv_func_<function> variable in configure.ac
I HAVE_<FUNCTION> defines in configuration headers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/99

AC CHECK FUNCS() example

Demo 09

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 55/99

Checking for headers

I Much like AC_FUNC_* and AC_CHECK_FUNC[S], but for headers
I Variety of AC_HEADER_* macros

I Check the autoconf manual for details

I AC_CHECK_HEADER[S] for generic headers checking
I AC_CHECK_HEADER (header-file, [action-if-found], [action-if-not-

found], [includes])
I AC_CHECK_HEADERS (header-file..., [action-if-found], [action-if-

not-found], [includes])
I Results available in:

I ac_cv_header_<header-file> variable in configure.ac
I HAVE_<HEADER>_H define in config.h

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 56/99

AC CHECK HEADERS example

configure.ac

[...]

AC_CHECK_HEADERS([spawn.h],

[echo "Header spawn.h was found"; has_spawn=yes],

[echo "Header spawn.h was not found"])

echo ${has_spawn}

[...]

Execution of ./configure

$./configure

[...]

checking for spawn.h... yes

Header spawn.h was found

yes

[...]

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/99

Checking for libraries

AC_SEARCH_LIBS (function, search-libs,

[action-if-found], [action-if-not-found],

[other-libraries])

I Search for a library defining function, by linking a simple program calling
function

I Tries first with no library, and then with the different libraries in search-libs,
one after the other.

I If a library is found, -llibrary is prepended to the LIBS variable, so programs
will be linked against it. action-if-found is executed.

I If not, action-if-not-found is executed

I other-libraries allows to pass additional -l<foo> arguments that may be
needed for the link test to succeed.

I Result in ac_cv_search_<function>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/99

AC SEARCH LIBS example

Demo 10

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 59/99

Other checks

I Programs with AC_CHECK_PROGS
I AC_CHECK_PROGS(PERL, [perl5 perl])

I Declarations with AC_CHECK_DECLS

I Structure members with AC_CHECK_MEMBERS

I Types with AC_CHECK_TYPES
I AC_CHECK_TYPES(int8_t)

I See the autoconf manual for details

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/99

Writing new tests

I You can create your own tests by pre-processing, compiling or linking small test
programs:

I Pre-processing test
AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])

I Compiling test
AC_COMPILE_IFELSE (input, [action-if-true], [action-if-false])

I Link test
AC_LINK_IFELSE (input, [action-if-true], [action-if-false])

I Input should be formatted with AC_LANG_SOURCE or AC_LANG_PROGRAM
I Runtime tests can also be created

I Beware, by nature, they cannot work for cross-compilation!
I AC_RUN_IFELSE

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 61/99

Writing new tests: AC LINK IFELSE

Demo 11

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/99

Printing messages

I When creating new tests, you may want to show messages, warnings, errors, etc.
I AC_MSG_CHECKING (feature-description)

I Notify the user that configure is checking for a particular feature.

I AC_MSG_RESULT (result-description)
I Notify the user of the results of a check

I AC_MSG_NOTICE (message)
I Deliver the message to the user.

I AC_MSG_ERROR (error-description, [exit-status = $?/1])
I Notify the user of an error that prevents configure from completing.

I AC_MSG_WARN (problem-description)
I Notify the configure user of a possible problem.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 63/99

Printing messages: example

Demo 11 continued

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 64/99

Cache variables

I Each test done by autoconf is normally associated to a cache variable.
I Allows to speed-up the configure step by passing a cache file with pre-defined values.
I Allows to override the results of tests if they are not correct for some reason

I AC_CACHE_VAL(cache-id, commands-to-set-it), runs commands if cache-id
is not already set. commands must set the cache-id variable and have no
side-effect.

I AC_CACHE_CHECK(message, cache-id, commands), wrapper around
AC_CACHE_VAL to print the message.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/99

Cache variables demo

Demo 11 further continued

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 66/99

Using external software

I When a package uses external software, --with-<package>=<arg> and
--without-<package> options are generally offered to control usage of the
external software.

I Implemented using the AC_ARG_WITH macro.

AC_ARG_WITH (package, help-string,

[action-if-given], [action-if-not-given])

I package gives the name of the option
I help-string is the help text, visible in ./configure --help
I action-if-given is executed when the option is used, either positively (--with)

or negatively (--without)
I action-if-not-given is executed when the option is not used
I <arg> available as $withval inside action-if-given, $with_<package> outside.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/99

Package options

I When a package offers optional features, --enable-<feature> and
--disable-<feature> options are generally offered to control the optional
feature.

I Implemented using the AC_ARG_ENABLE macro.

AC_ARG_ENABLE (feature, help-string,

[action-if-given], [action-if-not-given])

I Usage very similar to the one of AC_ARG_WITH

I Value available as $enableval inside action-if-given, $enable_<feature>
outside.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/99

Formatting the help string

I To help formatting the help string, autoconf provides the AS_HELP_STRING macro

I Allows to properly align the different options in the ./configure --help output

AS_HELP_STRING (left-hand-side, right-hand-side,

[indent-column = '26'], [wrap-column = '79'])

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 69/99

AC ARG ENABLE example

Demo 12

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 70/99

Using pkg-config with autoconf

I To find libraries, a much better solution than AC_SEARCH_LIBS is to use
pkg-config

I pkg-config is a database of small text files, using the .pc extension, describing
how to use a given library

I installed in usr/lib/pkgconfig on most systems
I installed by most modern libraries

I The pkg-config command line tool allows to query this database for the
compiler and linker flags needed to use a given library.

I The PKG_CHECK_MODULES autoconf macro allows to query the pkg-config
database.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/99

The PKG CHECK MODULES macro

I Syntax:

PKG_CHECK_MODULES(prefix, list-of-modules,

action-if-found, action-if-not-found)

I prefix will be used to create the <prefix>_CFLAGS and <prefix>_LIBS
variables

I Contain the pre-processor and linker flags to use the libraries listed in
list-of-modules

I Are already AC_SUBSTed, so can be used directly in Makefile.am

I list-of-modules is one or several pkg-config libraries
I Can contain version specifiers, such as foo >= 3 bar baz <= 4

I Will exit with a failure if one of the dependencies is missing.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/99

PKG CHECK MODULES example

Demo 13

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 73/99

autoscan

I autoscan is a program provided together with autoconf

I Scans the source tree in the current directory (or the one passed as argument)
I From that, autoscan:

I Searches the source files for common portability problems
I Checks for incompleteness of the configure.ac file, if any
I Generates configure.scan, which can be used as a preliminary configure.ac

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/99

Additional m4 macros

I The core autoconf macros are installed in /usr/share/autoconf/autoconf/

I Additional macros can be installed by other packages in /usr/share/aclocal
I Examples: pkg.m4 (for pkg-config), gpg-error.m4, iconv.m4, etc.

I The GNU Autoconf Archive is a collection of more than 500 macros for
autoconf

I http://www.gnu.org/software/autoconf-archive/
I Example: AX_C_LONG_LONG, Provides a test for the existence of the long long int

type and defines HAVE LONG LONG if it is found.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/99

http://www.gnu.org/software/autoconf-archive/

autoconf-archive example

Demo 14

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 76/99

automake advanced

automake advanced
Thomas Petazzoni

© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Embedded Linux
Developers

Free Electrons

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/99

Subdirectories

I A project is often organized with multiple directories
I automake offers two options to support this:

I recursive make, where a sub-call to make is made for sub-directories, and each
directory has its own Makefile.am

I non-recursive make, where there is a single Makefile.am, building everything

I recursive make used to be the norm, but has significant drawbacks
I Performance for parallel building
I Recursive make considered harmful,

http://aegis.sourceforge.net/auug97.pdf

I non-recursive make is more and more commonly used in modern projects
I If the Makefile.am grows too large, one can use include to split it.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/99

http://aegis.sourceforge.net/auug97.pdf

Recursive make

I The SUBDIRS variable in a Makefile.am indicates the sub-directories that contain
other Makefile.am

configure.ac

AC_CONFIG_FILES([Makefile src/Makefile])

Makefile.am

SUBDIRS = src

src/Makefile.am

bin_PROGRAMS = hello

hello_SOURCES = main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/99

Non-recursive make

I The AM_INIT_AUTOMAKE macro accepts a subdir-objects argument

I If specified, allows a Makefile.am to reference code in another directory

configure.ac

AM_INIT_AUTOMAKE([subdir-objects])

AC_CONFIG_FILES([Makefile])

Makefile.am

bin_PROGRAMS = hello

hello_SOURCES = src/main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/99

automake subdirectories: demo

Demo 15 and 16

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/99

automake conditionals

I In order to use a conditional in a Makefile.am, it must be defined in the
configure.ac script.

I Done using the AM_CONDITIONAL(conditional, condition) macro

configure.ac

AM_CONDITIONAL([DEBUG], [test "${debug}" = "true"])

Makefile.am

if DEBUG

...

else

...

endif

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/99

Usage of automake conditionals

You cannot use
conditionals inside a
variable definition

Non-working example

bin_PROGRAMS = \

bar \

if DEBUG

baz \

endif

foobar

You should instead use an
intermediate variable

Working example

if DEBUG

DEBUG_PROGS = baz

endif

bin_PROGRAMS = \

bar \

$(DEBUG_PROGS) \

foobar

Or the += assigment sign

Working example

bin_PROGRAMS = \

bar \

foobar

if DEBUG

bin_PROGRAMS += baz

endif

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/99

Conditional example

Demo 17

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 84/99

Building shared libraries

I Building shared libraries is very different between Unix variants

I A specific tool, called libtool, was created to abstract away the differences
between platforms.

I Concept called libtool libraries, using the .la suffix
I A libtool library can designate a static library, a shared library, or both.

I --{enable,disable}-{static,shared} to select

I Libtool libraries declared using the LTLIBRARIES primary in a Makefile.am

I Typically used in conjunction with the HEADERS primary to install public headers.

I configure.ac must call the LT_PREREQ and LT_INIT macros

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/99

Libtool library example

configure.ac

[...]

LT_PREREQ([2.4])

LT_INIT

[...]

Makefile.am

bin_PROGRAMS = hello

hello_SOURCES = src/main.c

lib_LTLIBRARIES = libmyhello.la

libmyhello_la_SOURCES = lib/core.c

include_HEADERS = lib/myhello.h

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/99

Libtool versioning

I Needed to support changes in the library interface

I Each system handles library versioning differently

I libtool does not use the traditional <major>.<minor>.<revision>

I It uses a more abstract representation, converted differently depending on the
system on which you’re building.

I libtool representation is <current>:<revision>:<age>
I current is the interface number, incremented whenever the public interface changes
I revision is incremented whenever the library source code is changed
I age is incremented when new functions are added, reset to 0 when functions are

removed

I Defined using -version-info <current>:<revision>:<age> in
<product>_LDFLAGS

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/99

Libtool: demo

Demo 18

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 88/99

Global automake variables

I Variables that you can define in Makefile.am
I Apply to the current Makefile.am
I Affect all products described in the current Makefile.am

I AM_CPPFLAGS, default pre-processor flags

I AM_CFLAGS, default compiler flags

I AM_LDFLAGS, default linker flags

I LDADD, libraries not detected by configure that we should link with

I Do not set CPPFLAGS, CFLAGS and LDFLAGS, so that they can be passed in the
environment by users

Example

LDADD = $(top_builddir)/glib/libglib-2.0.la

AM_CPPFLAGS = $(gmodule_INCLUDES) $(GLIB_DEBUG_FLAGS)

AM_CFLAGS = -g

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/99

Per product variables

I <product>_SOURCES, list of source files

I <product>_LDADD, libraries to link with

I <product>_CPPFLAGS, pre-processor flags, overrides AM_CPPFLAGS

I <product>_CFLAGS, compiler flags, overrides AM_CFLAGS

I <product>_LDFLAGS, linker flags, overrides AM_LDFLAGS

Example

LDADD = $(top_builddir)/glib/libglib-2.0.la

module_test_LDADD = $(top_builddir)/gmodule/libgmodule-2.0.la $(LDADD)

module_test_LDFLAGS = $(G_MODULE_LDFLAGS)

slice_threadinit_LDADD = $(top_builddir)/gthread/libgthread-2.0.la $(LDADD)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/99

Useful variables

I Autoconf provides several variables that can be useful in your Makefile.am:

I top_srcdir, the relative path to the top of the source tree
I srcdir, the relative path to the directory that contains the current Makefile
I top_builddir, the relative path to the top of the build tree
I builddir, the current directory
I abs_top_srcdir, abs_srcdir, abs_top_builddir, abs_builddir, absolute

variants of the previous variables

I Example usage: library code in lib/, header files in include/:

lib/Makefile.am

lib_LTLIBRARIES = libhello.la

libhello_la_SOURCES = ...

libhello_la_CPPFLAGS = -I$(top_srcdir)/include

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/99

Demo 19

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/99

Silent rules

I By default, automake generate Makefiles that displays the full compilation
commands

I Using the AM_SILENT_RULES, you can get a slimmer build output

I By default, the output remains verbose, but can be silenced by passing the V=0

variable.

I If AM_SILENT_RULES([yes]) is used, the output is quiet by default, and verbose
if V=1 is passed.

$ make

CC lib/core.lo

CCLD libmyhello.la

CC src/main.o

CCLD hello

$ make V=1

[...]

libtool: link: (cd ".libs" && rm -f "libmyhello.so.0" && ln -s "libmyhello.so.0.0.0" ...

libtool: link: (cd ".libs" && rm -f "libmyhello.so" && ln -s "libmyhello.so.0.0.0" ...

libtool: link: ar cru .libs/libmyhello.a lib/core.o

libtool: link: ranlib .libs/libmyhello.a

[...]

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 93/99

Demo 20

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/99

make dist

I make dist generates a tarball to release the software

I All files listed in _SOURCES variables are automatically included, as well as the
necessary autotools files

I Additional files can be added to the distribution using the EXTRA_DIST variable in
Makefile.am:

Makefile.am

These files are used in the preparation of a release

EXTRA_DIST += \

PrepareRelease \

CheckMan \

CleanTxt \

[...]

I Distribution can also be controlled using the dist and nodist automake product
modifiers:

Makefile.am

nodist_include_HEADERS += pcrecpparg.h

dist_doc_DATA = doc/pcre.txt

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 95/99

Macro directory

I By default, all the third-party autoconf macros get copied into the (very large)
aclocal.m4 file.

I It is possible to get some of the third-party macros copied to individiual files in a
separate directory, which is nicer.

I Directory declared using AC_CONFIG_MACRO_DIR, generally named m4 by
convention:

configure.ac

AC_CONFIG_MACRO_DIR([m4])

I The ACLOCAL_AMFLAGS in Makefile.am should also be adjusted:

Makefile.am

ACLOCAL_AMFLAGS = -I m4

I For now, mainly used by libtool for its own m4 macros.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96/99

Auxiliary directory

I The auxiliary files generated by autotools such as compile, config.guess,
config.sub, depcomp, etc. are by default in the main directory of the source
tree.

I This clutters the main directory with lots of files, which may not be very pleasant.

I AC_CONFIG_AUX_DIR allows to customize where these files are generated:

configure.ac

AC_CONFIG_AUX_DIR([build-aux])

I One condition: it must be placed before the calls to AM_INIT_AUTOMAKE and
LT_INIT

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/99

Macro/auxiliary directory: demo

Demo 21

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 98/99

Questions?

Thomas Petazzoni

thomas.petazzoni@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/

Demos: https://github.com/tpetazzoni/autotools-demo

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/99

http://free-electrons.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/
https://github.com/tpetazzoni/autotools-demo

	User point of view
	autoconf basics
	automake basics
	autoconf advanced
	automake advanced

