a@ Embedded Linux Conference 2016

GNU Autotools: a tutorial

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/99

a Thomas Petazzoni
nd?)

» CTO and Embedded Linux engineer at Free Electrons
» Embedded Linux specialists.
» Development, consulting and training.
> http://free-electrons.com
» Contributions
» Kernel support for the Marvell Armada ARM SoCs
from Marvell
» Major contributor to Buildroot, an open-source, simple
and fast embedded Linux build system

» Living in Toulouse, south west of France

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/99

http://free-electrons.com

When talking about autotools, most people think:

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

When talking about autotools, most people think:
Computer & Literatur c l

Florian Stéhr

Die GNU Autotools

Leitfaden fiir die Softwaredistribution

Unix-Buildsysteme
mif Aufocont,
Automake und Libtool

Deutsche Originulausgabe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

When talking about autotools, most people think:
Computer & Literatur c l

Florian Stéhr

Die GNU Autotools

Leitfaden fiir die Softwaredistribution

Unix-Buildsysteme
mif Aufocont,
Automake und Libtool

But this is a German book, really about the autotools!

Deutsche Originulausgabe

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/99

G@ Autotools, why?

v

Yes, the autotools are old

v

Yes, they have their pain points

v

Yes, people hate them

v

Due to this, people tend to roll-their-own, and roll-their-own build systems tend to
be even worse than the autotools
» But

» They bring a number of very useful benefits
» They are not that complicated when you take the time to get back to the basics

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/99

@o Autotools: benefits

» Standardized build procedure and behavior: users know how to build things that
use the autotools

» Good for human users, but also for build systems
» Proper handling for diverted installation
> |l.e. build with prefix=/usr, but divert the installation to another directory. Needed
for cross-compilation.
» Built-in support for out-of-tree build
» Built-in handling of dependencies on header files

» Support for cross-compilation aspects
» Somewhat esoteric, but standardized languages used

» Learn once, use for many projects
» New contributors are more likely to know the autotools than your own custom thing

» Of course, there are alternatives, CMake being the most interesting and widely
used.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/99

Disclaimer
9

> | am not an autotools expert

» | don't know the internals of autotools, only their usage

» This tutorial will only cover the basics aspects
» Sufficient to understand the autoconf/automake documentation
» Sufficient to understand most existing build systems

» Won't cover many advanced aspects

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

6/99

@o Autotools tutorial: agenda

User point of view
autoconf basics
automake basics

autoconf advanced

o b=

automake advanced

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/99

User point of view

Free Electrons

User point of view L

Thomas Petazzoni

@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/99

a@ Using autotools based packages

» The basic steps to build an autotools based software component are:

1. Configuration
./configure
Will look at the available build environment, verify required dependencies, generate
Makefiles and a config.h
2. Compilation
make
Actually builds the software component, using the generated Makefiles.
3. Installation
make install
Installs what has been built.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/99

a@ Standard Makefile targets

» all, builds everything. The default target.

» install, installs everything that should be installed.

» install-strip, same as install, but then strips debugging symbols

» uninstall

» clean, remove what was built

» distclean, same as clean, but also removes the generated autotools files
» check, run the test suite

» installcheck, check the installation

» dist, create a tarball

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/99

Standard filesystem hierarchy

» prefix, defaults to /usr/local
» exec-prefix, defaults to prefix

> bindir, for programs, defaults to exec-prefix/bin
» 1libdir, for libraries, defaults to exec-prefix/lib

» includedir, for headers, defaults to prefix/include

» datarootdir, defaults to prefix/share

» datadir, defaults to datarootdir
» mandir, for man pages, defaults to datarootdir/man
» infodir, for info documents, defaults to datarootdir/info

» sysconfdir, for configuration files, defaults to prefix/etc
» ——<option> available for each of them
» E.g: ./configure --prefix=~/sys/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/99

Standard configuration variables

» CC, C compiler command

» CFLAGS, C compiler flags

» CXX, C++ compiler command

» CXXFLAGS, C++4 compiler flags

» LDFLAGS, linker flags

» CPPFLAGS, C/C++ preprocessor flags

» and many more, see ./configure --help

» E.g: ./configure CC=arm-linux-gcc

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/99

@o System types: build, host, target

> autotools identify three system types:

» build, which is the system where the build takes place

» host, which is the system where the execution of the compiled code will take place

» target, which is the system for which the program will generate code. This is only
used for compilers, assemblers, linkers, etc.

» Corresponding --build, --host and --target configure options.

» They are all automatically guessed to the current machine by default
--build, generally does not need to be changed

v

» —-host, must be overridden to do cross-compilation
» —-target, needs to be overridden if needed (to generate a cross-compiler, for
example)

» Arguments to these options are configuration names, also called system tuples

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/99

@o System type: native compilation example

Demo
(based on the kmod source code)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/99

G Cross-compilation
o)

» By default, autotools will guess the host machine as being the current machine

» To cross-compile, it must be overridden by passing the --host option with the
appropriate configuration name

» By default, autotools will try to use the cross-compilation tools that use the
configuration name as their prefix.

» If not, the variables CC, CXX, LD, AR, etc. can be used to point to the
cross-compilation tools.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/99

Qo Out of tree build

v

autotools support out of tree compilation by default

v

Consists in doing the build in a directory separate from the source directory

Allows to:

» Build different configurations without having to rebuild from scratch each time.
» Not clutter the source directory with build related files

v

» To use out of tree compilation, simply run the configure script from another
empty directory
» This directory will become the build directory

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/99

Demo

@o Diverted installation with DESTDIR

» By default, make install installs to the directories given in —-prefix and
related options.
» In some situations, it is useful to divert the installation to another directory

» Cross-compilation, where the build machine is not the machine where applications
will be executed.
» Packaging, where the installation needs to be done in a temporary directory.

» Achieved using the DESTDIR variable.

Demo!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

19/99

@o --prefix or DESTDIR ?

» ——prefix and DESTDIR are often misunderstood

» --prefix is the location where the programs/libraries will be placed when
executed on the host machine

» DESTDIR is a way of temporarily diverting the installation to a different location.

» For example, if you use —-prefix=/home/<foo>/sys/usr, then binaries/libraries
will look for icons in /home/<foo>/sys/usr/share/icons

» Good for native installation in /home/<foo>/sys
» Bad for cross-compilation where the binaries will ultimately be in /usr

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

20/99

a@ —--prefix or DESTDIR use cases

» Native compilation, install system-wide in /usr

$./configure --prefix=/usr
$ make
$ sudo make install

» Native compilation, install in a user-specific directory:

$./configure --prefix=/home/<foo>/sys/
$ make
$ make install

» Cross-compilation, install in /usr, diverted to a temporary directory where the
system for the target is built

$./configure --prefix=/usr
$ make
$ make DESTDIR=/home/<foo>/target-rootfs/ install

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/99

a Analyzing issues
o)

> autoconf keeps a log of all the tests it runs in a file called config.log

» Very useful for analysis of autoconf issues

» It contains several sections: Platform, Core tests, Running config.status, Cache
variables, Output variables, confdefs.h

» The end of the Core tests section is usually the most interesting part

» This is where you would get more details about the reason of the configure script
failure

> At the beginning of config.log you can also see the ./configure line that was
used, with all options and environment variables.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/99

a@ autotools: autoconf and automake
OB\ 4

» The configure script is a shell script generated from configure.ac by a
program called autoconf

» configure.ac used to be named configure.in but this name is now deprecated
» Written in shell script, augmented with numerous m4 macros

» The Makefile.in are generated from Makefile.an files by a program called
automake

» Uses special make variables that are expanded in standard make constructs
» Some auxilliary tools like autoheader or aclocal are also used

» autoheader is responsible for generating the configuration header template,
config.h.in

» Generated files (configure, Makefile.in, Makefile) should not be modified.
» Reading them is also very difficult. Read the real source instead!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/99

o Overall organization

configure.ac src/Makefile.am Makefile.am
|
autoheader | | autoconf | | automake
v v
config.h.in | src/Makefile.in | | Makefile.in
\4
| configure

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

v v

| src/Makefile | | Makefile

Written by the developer

Tools used by the developer
generally through autoreconf

Generated by the developers,
as the result of autoreconf

Generated by the person
building the software, as the
result of the configure script
execution

24/99

a Cache variables
nd?)

» Each test done by a configure.ac script is associated with a cache variable

> The list of such variables and their values is visible in config.log:

(i} =—om—mssommosss ##
Cache variables.
(i} omommsmeomosss ##

ac_cv_build=x86_64-unknown-linux-gnu
ac_cv_c_compiler_gnu=yes

[oood

ac_cv_path_SED=/bin/sed

» If the autodetected value is not correct for some reason, you can override any of
these variables in the environment:

$ ac_cv_path_SED=/path/to/sed ./configure

» This is sometimes useful when cross-compiling, since some tests are not always
cross-compilation friendly.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/99

Distribution
9%

> In general:

» When a software is published as a tarball, the configure script and Makefile.in
files are already generated and part of the tarball.

» When a software is published through version control system, only the real sources
configure.ac and Makefile.am are available.

» There are some exceptions (like tarballs not having pre-generated
configure/Makefile.in)

» Do not version control generated files!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

26/99

a@ Regenerating autotools files: autoreconf

» To generate all the files used by autotools, you could call automake, autoconf,
aclocal, autoheader, etc. manually.

» But it is not very easy and efficient.
> A tool called autoreconf automates this process
» Useful option: -i or ——install, to ask autoreconf to copy missing auxiliary files

» Always use autoreconf!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

27/99

o autoconf basics

Free Electrons

autoconf basics B 1

Thomas Petazzoni

@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/99

a configure.ac language
o)

v

Really a shell script

v

Processed through the m4 preprocessor

v

Shell script augmented with special constructs for portability:

» AS_IF instead of shell if ... then .. fi
» AS_CASE instead of shell case ... esac
> etc.

v

autoconf provides a large set of m4 macros to perform most of the usual tests

v

Make sure to quote macro arguments with []

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/99

a Minimal configure.ac
od,)

configure.ac
AC_INIT([hello], [1.0])
AC_OUTPUT

» AC_INIT
» Every configure script must call AC_INIT before doing anything else that produces

output.
> Process any command-line arguments and perform initialization and verification.

» Prototype:
AC_INIT (package, version, [bug-report], [tarname], [url])
» AC_OUTPUT

» Every configure.ac, should finish by calling AC_OUTPUT.
» Generates and runs config.status, which in turn creates the makefiles and any

other files resulting from configuration.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/99

Demo 01

a Additional basic macros
nd?)

» AC_PREREQ

» Verifies that a recent enough version of autoconf is used
» AC_PREREQ([2.68])

» AC_CONFIG_SRCDIR
> Gives the path to one source file in your project
» Allows autoconf to check that it is really where it should be
» AC_CONFIG_SRCDIR([hello.c])
» AC_CONFIG_AUX_DIR
» Tells autoconf to put the auxiliary build tools it requires in a different directory,
rather than the one of configure.ac
» Useful to keep cleaner build directory

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/99

Demo 02

Checking for basic programs

» AC_PROG_CC, makes sure a C compiler is available
» AC_PROG_CXX, makes sure a C++ compiler is available
» AC_PROG_AWK, AC_PROG_GREP, AC_PROG_LEX, AC_PROG_YACC, etc.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/99

Checking for basic programs: example

Demo 03

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/99

AC_CONFIG_FILES

» AC_CONFIG_FILES (file..., [cmds], [init-cmds])

» Make AC_OUTPUT create each file by copying an input file (by default file.in),
substituting the output variable values.

» Typically used to turn the Makefile templates Makefile.in files into final
Makefile.

> Example:
AC_CONFIG_FILES([Makefile src/Makefile])

» cmds and init-cmds are rarely used, see the autoconf documentation for details.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/99

Output variables
Qiha utput vari

» autoconf will replace @variable®@ constructs by the appropriate values in files
listed in AC_CONFIG_FILES

» Long list of standard variables replaced by autoconf

> Additional shell variables declared in configure.ac can be replaced using
AC_SUBST

» The following three examples are equivalent:

AC_SUBST([F00], [42])

FO0=42
AC_SUBST([F0O0])

AC_SUBST ([FOO])
F00=42

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

37/99

Demo 04

a configure.ac: a shell script
od,)

> It is possible to include normal shell constructs in configure.ac
» Beware to not use bashisms: use only POSIX compatible constructs

» Most configure scripts use directly shell constructs, but AS_ECHO, AS_TF, etc. are
available.

Demo 05 and 05b

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/99

@o Writing Makefile.in?

» At this point, we have seen the very basics of autoconf to perform the
configuration side of our software

» We could use AC_CONFIG_FILES to generate Makefile from Makefile.in

» However, writing a Makefile.in properly is not easy, especially if you want to:
» be portable
» automatically handle dependencies
» support conditional compilation, out-of-tree build, diverted installation,
cross-compilation, etc.
> For these reasons, Makefile.in are typically not written manually, but generated
by automake from a Makefile.amn file

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

40/99

0 automake basics

Free Electrons

automake basics R

Thomas Petazzoni

@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/99

@o Makefile.am language

> Really just a Makefile
» You can include regular make code

» Augmented with automake specific constructs that are expanded into regular
make code

» For most situations, the automake constructs are sufficient to express what needs
to be built

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/99

a@ Makefile.am minimal example

» The minimal example of Makefile.am to build just one C file into a program is
only two lines:

Makefile.am

bin_PROGRAMS = hello
hello_SOURCES = main.c

» Will compile main.c to main.o
» And link hello.o into the hello executable
» Which will be installed in $prefix/bin

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/99

a@ Enabling automake in configure.ac

> To enable automake usage in configure.ac, you need:
» A call to AM_INIT_AUTOMAKE
» Generate the Makefile using AC_CONFIG_FILES
> automake will generate the Makefile.in at autoreconf time, and configure will
generate the final Makefile

configure.ac

AC_INIT([hello]l, [1.0]1)
AM_INIT_AUTOMAKE([foreign 1.13])
AC_PROG_CC
AC_CONFIG_FILES([Makefile])
AC_OUTPUT

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/99

Demo 06

Qo AM_INIT_AUTOMAKE

» AM_INIT_AUTOMAKE ([OPTIONS])
> Interesting options:
» foreign, tells automake to not require all the GNU Coding Style files such as NEWS,
README, AUTHORS, etc.
» dist-bzip2, dist-xz, etc. tell automake which tarball format should be generated
by make dist
» subdir-objects tells automake that the objects are placed into the subdirectory of
the build directory corresponding to the subdirectory of the source file
> version, e.g 1.14.1, tells the minimal automake version that is expected

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/99

G@ Makefile.am syntax

» An automake parsable Makefile.am is composed of product list variables:

bin_PROGRAMS = hello

» And product source variables:

hello_SOURCES = main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/99

a@ Product list variables

[modifier-list]prefix_PRIMARY = productl product2 ...

» prefix is the installation prefix, i.e. where it should be installed
» All xdir variables from autoconf can be used, without their dir suffix: use bin for
bindir
> E.g.: bindir, libdir, includedir, datadir, etc.
» PRIMARY describes what type of things should be built:

» PROGRAMS, for executables

LIBRARIES, LTLIBRARIES, for libraries
HEADERS, for publicly installed header files
DATA, arbitrary data files
PYTHON, JAVA, SCRIPTS

MANS, TEXINFOS, for documentation

vV vy vy VvYyy

> After the = sign, list of products to be generated

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 48/99

G Product source variables
nd?)

[modifier-list]product_SOURCES = filel file2 ...

» The product is the normalized name of the product, as listed in a product list
variable

» The normalization consists in replacing special characters such as . or + by _. For
example, 1ibfoo+.a in a product list variable gives the 1ibfoo__a_SOURCES
product source variable.

> _SOURCES is always used, it's not like a configurable primary.

» Contains the list of files containing the source code for the product to be built.
» Both source files and header files should be listed.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 49/99

More complicated automake example

Demo 07

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 50/99

o autoconf advanced

Free Electrons

autoconf advanced B 1

Thomas Petazzoni

@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 51/99

Configuration header

» Very often, C/C++ code needs to know the result of certain tests done by the
configure script.

> A template C header file can be automatically generated by autoheader,
generally named config.h.in

» The final header file is generated by configure, generally named config.h
» Declared using AC_CONFIG_HEADERS
configure.ac extract

AC_CONFIG_HEADERS ([config.h])

Example config.h

/* Define if the complete vga libraries (vga, vgagl) are installed */
/* #undef HAVE_LIBVGA */

/* Define to 1 if you have the <limits.h> header file. */
#define HAVE_LIMITS_H 1

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 52/99

AC_DEFINE
@o

» AC_DEFINE allows to create C definitions in the configuration header

» AC_DEFINE (variable, value, description)

configure.ac

AC_DEFINE([FOOBAR], [42], [This is the foobar valuel)

Demo 08

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 53/99

Checking for functions

» You may need to check if certain functions are available and/or meet certain
characteristics

» Family of AC_FUNC_* macros

» AC_FUNC_FORK, AC_FUNC_GETLOADAVG, AC_FUNC_MALLOC, etc.
» See autoconf manual for details

» AC_CHECK_FUNC[S] to check for generic functions

» AC_CHECK_FUNC (function, [action-if-found], [action-if-not-found])

» AC_CHECK_FUNCS (function..., [action-if-found], [action-if-not-
found])
» Results available

» ac_cv_func_<function> variable in configure.ac
» HAVE_<FUNCTION> defines in configuration headers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 54/99

Demo 09

Checking for headers

» Much like AC_FUNC_x* and AC_CHECK_FUNC[S], but for headers
» Variety of AC_HEADER_* macros
» Check the autoconf manual for details
» AC_CHECK_HEADER[S] for generic headers checking
» AC_CHECK_HEADER (header-file, [action-if-found], [action-if-not-
found], [includes])
» AC_CHECK_HEADERS (header-file..., [action-if-found], [action-if-

not-found], [includes])
» Results available in:

» ac_cv_header_<header-file> variable in configure.ac
» HAVE_<HEADER>_H define in config.h

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

56/99

AC_CHECK_HEADERS example

configure.ac

[...]

AC_CHECK_HEADERS ([spawn.h],
[echo "Header spawn.h was found"; has_spawn=yes],
[echo "Header spawn.h was not found"])

echo ${has_spawn}

Lol

Execution of ./configure

$./configure

Loood

checking for spawn.h... yes
Header spawn.h was found
yes

[

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 57/99

a@ Checking for libraries

AC_SEARCH_LIBS (function, search-libs,

>

[action-if-found], [action-if-not-found],
[other-libraries])

Search for a library defining function, by linking a simple program calling
function

Tries first with no library, and then with the different libraries in search-1ibs,
one after the other.

If a library is found, -11ibrary is prepended to the LIBS variable, so programs
will be linked against it. action-if-found is executed.

If not, action-if-not-found is executed

other-libraries allows to pass additional ~1<foo> arguments that may be
needed for the link test to succeed.

Result in ac_cv_search_<function>

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 58/99

Demo 10

Other checks

v

Programs with AC_CHECK_PROGS

» AC_CHECK_PROGS (PERL, [perl5 perll)
Declarations with AC_CHECK_DECLS
Structure members with AC_CHECK_MEMBERS

Types with AC_CHECK_TYPES
» AC_CHECK_TYPES(int8_t)

v

v

v

See the autoconf manual for details

v

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 60/99

ertlng new tests

» You can create your own tests by pre-processing, compiling or linking small test
programs:

> Pre-processing test
AC_PREPROC_IFELSE (input, [action-if-true], [action-if-false])

» Compiling test
AC_COMPILE_IFELSE (input, [action-if-true], [action-if-false])

» Link test
AC_LINK_IFELSE (input, [action-if-true], [action-if-false])

> Input should be formatted with AC_LANG_SOURCE or AC_LANG_PROGRAM
» Runtime tests can also be created

» Beware, by nature, they cannot work for cross-compilation!
» AC_RUN_IFELSE

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

61/99

@o Writing new tests: AC_LINK_IFELSE

Demo 11

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 62/99

Printing messages

» When creating new tests, you may want to show messages, warnings, errors, etc.
» AC_MSG_CHECKING (feature-description)
» Notify the user that configure is checking for a particular feature.
» AC_MSG_RESULT (result-description)
» Notify the user of the results of a check
» AC_MSG_NOTICE (message)
» Deliver the message to the user.
» AC_MSG_ERROR (error-description, [exit-status = $7/1])
» Notify the user of an error that prevents configure from completing.
» AC_MSG_WARN (problem-description)
> Notify the configure user of a possible problem.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

63/99

Demo 11 continued

a Cache variables
nd?)

» Each test done by autoconfis normally associated to a cache variable.
» Allows to speed-up the configure step by passing a cache file with pre-defined values.
» Allows to override the results of tests if they are not correct for some reason
» AC_CACHE_VAL(cache-id, commands-to-set-it), runs commands if cache-id
is not already set. commands must set the cache-id variable and have no
side-effect.
» AC_CACHE_CHECK (message, cache-id, commands), wrapper around
AC_CACHE_VAL to print the message.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 65/99

Demo 11 further continued

a Using external software
o)

» When a package uses external software, ~—with-<package>=<arg> and

--without-<package> options are generally offered to control usage of the
external software.

> Implemented using the AC_ARG_WITH macro.

AC_ARG_WITH (package, help-string,
[action-if-given], [action-if-not-given])

» package gives the name of the option

» help-string is the help text, visible in ./configure --help

» action-if-given is executed when the option is used, either positively (--with)
or negatively (--without)

» action-if-not-given is executed when the option is not used

» <arg> available as $withval inside action-if-given, $with_<package> outside.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 67/99

Q@ Package options

» When a package offers optional features, ——enable-<feature> and

--disable-<feature> options are generally offered to control the optional
feature.

> Implemented using the AC_ARG_ENABLE macro.
AC_ARG_ENABLE (feature, help-string,
[action-if-given], [action-if-not-given])
» Usage very similar to the one of AC_ARG_WITH

> Value available as $enableval inside action-if-given, $enable_<feature>
outside.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 68/99

60 Formatting the help string

» To help formatting the help string, autoconf provides the AS_HELP_STRING macro
> Allows to properly align the different options in the . /configure --help output

AS_HELP_STRING (left-hand-side, right-hand-side,

[indent-column = '26'], [wrap-column = '79'])

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

69/99

Demo 12

60 Using pkg-config with autoconf

» To find libraries, a much better solution than AC_SEARCH_LIBS is to use
pkg-config
» pkg-config is a database of small text files, using the .pc extension, describing
how to use a given library
> installed in usr/1ib/pkgconfig on most systems
> installed by most modern libraries
» The pkg-config command line tool allows to query this database for the
compiler and linker flags needed to use a given library.
» The PKG_CHECK_MODULES autoconf macro allows to query the pkg-config
database.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 71/99

G@ The PKG_CHECK_MODULES macro

» Syntax:

PKG_CHECK_MODULES (prefix, list-of-modules,
action-if-found, action-if-not-found)

» prefix will be used to create the <prefix>_CFLAGS and <prefix>_LIBS

variables

» Contain the pre-processor and linker flags to use the libraries listed in
list-of-modules
> Are already AC_SUBSTed, so can be used directly in Makefile.am

» list-of-modules is one or several pkg-config libraries
» Can contain version specifiers, such as foo >= 3 bar baz <= 4

» Will exit with a failure if one of the dependencies is missing.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 72/99

Demo 13

autoscan
9

» autoscan is a program provided together with autoconf
» Scans the source tree in the current directory (or the one passed as argument)

» From that, autoscan:

» Searches the source files for common portability problems
» Checks for incompleteness of the configure.ac file, if any
» Generates configure.scan, which can be used as a preliminary configure.ac

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 74/99

a@ Additional m4 macros

» The core autoconf macros are installed in /usr/share/autoconf/autoconf/
» Additional macros can be installed by other packages in /usr/share/aclocal
» Examples: pkg.m4 (for pkg-config), gpg-error.m4, iconv.m4, etc.

» The GNU Autoconf Archive is a collection of more than 500 macros for
autoconf
» http://www.gnu.org/software/autoconf-archive/
» Example: AX_C_LONG_LONG, Provides a test for the existence of the long long int
type and defines HAVE_LONG_LONG if it is found.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 75/99

http://www.gnu.org/software/autoconf-archive/

Demo 14

0 automake advanced

Free Electrons

automake advanced R

Thomas Petazzoni

@© Copyright 2004-2016, Free Electrons.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 77/99

Subdirectories
9%

v

A project is often organized with multiple directories

v

automake offers two options to support this:
» recursive make, where a sub-call to make is made for sub-directories, and each
directory has its own Makefile.am
» non-recursive make, where there is a single Makefile.am, building everything
> recursive make used to be the norm, but has significant drawbacks

» Performance for parallel building
» Recursive make considered harmful,
http://aegis.sourceforge.net/auug9d7.pdf

» non-recursive make is more and more commonly used in modern projects
> If the Makefile.am grows too large, one can use include to split it.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 78/99

http://aegis.sourceforge.net/auug97.pdf

a Recursive make
nd?)

» The SUBDIRS variable in a Makefile.am indicates the sub-directories that contain
other Makefile.am

configure.ac

AC_CONFIG_FILES([Makefile src/Makefilel)

Makefile.am

SUBDIRS = src

src/Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 79/99

a Non-recursive make
nd?)

> The AM_INIT_AUTOMAKE macro accepts a subdir-objects argument

> If specified, allows a Makefile.am to reference code in another directory

configure.ac

AM_INIT_AUTOMAKE([subdir-objects])
AC_CONFIG_FILES([Makefile])

Makefile.am
bin_PROGRAMS = hello
hello_SOURCES = src/main.c

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 80/99

automake subdirectories: demo

Demo 15 and 16

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 81/99

automake conditionals

» In order to use a conditional in a Makefile.am, it must be defined in the
configure.ac script.

» Done using the AM_CONDITIONAL (conditional, condition) macro

configure.ac

AM_CONDITIONAL ([DEBUG], [test "${debug}t" = "true"])

Makefile.am

if DEBUG
else
endif

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 82/99

You cannot use
conditionals inside a
variable definition

Non-working example

bin_PROGRAMS = \
bar \
if DEBUG
baz \
endif
foobar

Usage of automake conditionals

You should instead use an

intermediate variable Or the += assigment sign

Working example Working example
if DEBUG bin_PROGRAMS = \
DEBUG_PROGS = baz bar \
endif foobar
bin_PROGRAMS = \ if DEBUG
bar \ bin_PROGRAMS += baz
$(DEBUG_PROGS) \ endif
foobar

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 83/99

Demo 17

a@ Building shared libraries

v

Building shared libraries is very different between Unix variants

v

A specific tool, called 1ibtool, was created to abstract away the differences
between platforms.

v

Concept called libtool libraries, using the .1a suffix
A libtool library can designate a static library, a shared library, or both.
» ——{enable,disable}-{static,shared} to select

Libtool libraries declared using the LTLIBRARIES primary in a Makefile.am

v

v

v

Typically used in conjunction with the HEADERS primary to install public headers.
configure.ac must call the LT_PRERE(Q and LT_INIT macros

v

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 85/99

a@ Libtool library example

configure.ac

[...]
LT_PREREQ([2.4])
LT_INIT

[...]

Makefile.am

bin_PROGRAMS = hello
hello_SOURCES = src/main.c

1ib_LTLIBRARIES = libmyhello.la

libmyhello_la_SOURCES = lib/core.c
include_HEADERS = 1lib/myhello.h

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 86/99

a@ Libtool versioning

» Needed to support changes in the library interface

» Each system handles library versioning differently

» libtool does not use the traditional <major>.<minor>.<revision>

> |t uses a more abstract representation, converted differently depending on the
system on which you're building.

> libtool representation is <current>:<revision>:<age>

» current is the interface number, incremented whenever the public interface changes

» revision is incremented whenever the library source code is changed

» age is incremented when new functions are added, reset to 0 when functions are
removed

> Defined using -version-info <current>:<revision>:<age> in
<product>_LDFLAGS

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 87/99

Demo 18

a Global automake variables
nd?)

» Variables that you can define in Makefile.am

> Apply to the current Makefile.am
» Affect all products described in the current Makefile.am

» AM_CPPFLAGS, default pre-processor flags

» AM_CFLAGS, default compiler flags

» AM_LDFLAGS, default linker flags

» LDADD, libraries not detected by configure that we should link with

» Do not set CPPFLAGS, CFLAGS and LDFLAGS, so that they can be passed in the
environment by users

Example

LDADD = $(top_builddir)/glib/libglib-2.0.1a
AM_CPPFLAGS = $(gmodule_INCLUDES) $(GLIB_DEBUG_FLAGS)
AM_CFLAGS = -g

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 89/99

Per product variables

» <product>_SOURCES, list of source files

» <product>_LDADD, libraries to link with

» <product>_CPPFLAGS, pre-processor flags, overrides AM_CPPFLAGS
» <product>_CFLAGS, compiler flags, overrides AM_CFLAGS

» <product>_LDFLAGS, linker flags, overrides AM_LDFLAGS

Example
LDADD = $(top_builddir)/glib/1ibglib-2.0.1a
module_test_LDADD = $(top_builddir)/gmodule/libgmodule-2.0.1a $(LDADD)

module_test_LDFLAGS = $(G_MODULE_LDFLAGS)
slice_threadinit_LDADD = $(top_builddir)/gthread/libgthread-2.0.1a $(LDADD)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 90/99

a Useful variables
nd?)

» Autoconf provides several variables that can be useful in your Makefile.am:

top_srcdir, the relative path to the top of the source tree

srcdir, the relative path to the directory that contains the current Makefile
top_builddir, the relative path to the top of the build tree

builddir, the current directory

abs_top_srcdir, abs_srcdir, abs_top_builddir, abs_builddir, absolute
variants of the previous variables

vV vy vy VvYyy

» Example usage: library code in 1ib/, header files in include/:

lib/Makefile.am

1ib_LTLIBRARIES = libhello.la
libhello_la_SOURCES = ...
libhello_la_CPPFLAGS = -I$(top_srcdir)/include

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 91/99

Demo 19

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 92/99

Silent rules
9

>

$ make
[...]

libtool:
libtool:
libtool:
libtool:

[...]

By default, automake generate Makefiles that displays the full compilation
commands

Using the AM_SILENT_RULES, you can get a slimmer build output

By default, the output remains verbose, but can be silenced by passing the V=0
variable.

If AM_STLENT_RULES([yes]) is used, the output is quiet by default, and verbose
if V=1 is passed.

lib/core.lo
libmyhello.la
src/main.o
hello
V=1
link: (cd ".libs" && rm -f "libmyhello.so.0" && 1ln -s "libmyhello.so0.0.0.0" ...
link: (cd ".libs" && rm -f "libmyhello.so" && 1ln -s "libmyhello.s0.0.0.0" ...
link: ar cru .libs/libmyhello.a 1lib/core.o
link: ranlib .libs/libmyhello.a

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

93/99

Demo 20

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 94/99

ao make dist

» make dist generates a tarball to release the software

> All files listed in _SOURCES variables are automatically included, as well as the
necessary autotools files

» Additional files can be added to the distribution using the EXTRA_DIST variable in
Makefile.am:

Makefile.am

These files are used in the preparation of a release
EXTRA_DIST += \

PrepareRelease \

CheckMan \

CleanTxt \

[...]

» Distribution can also be controlled using the dist and nodist automake product
modifiers:

Makefile.am

nodist_include_HEADERS += pcrecpparg.h
dist_doc_DATA = doc/pcre.txt

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com

95/99

a@ Macro directory

» By default, all the third-party autoconf macros get copied into the (very large)
aclocal.m4 file.

> It is possible to get some of the third-party macros copied to individiual files in a
separate directory, which is nicer.

» Directory declared using AC_CONFIG_MACRO_DIR, generally named m4 by
convention:

configure.ac

AC_CONFIG_MACRO_DIR([m4])
» The ACLOCAL_AMFLAGS in Makefile.am should also be adjusted:

Makefile.am

ACLOCAL_AMFLAGS = -I m4
» For now, mainly used by 1ibtool for its own m4 macros.

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 96,/99

a@ Auxiliary directory

» The auxiliary files generated by autotools such as compile, config.guess,
config.sub, depcomp, etc. are by default in the main directory of the source
tree.

» This clutters the main directory with lots of files, which may not be very pleasant.
» AC_CONFIG_AUX_DIR allows to customize where these files are generated:
configure.ac

AC_CONFIG_AUX_DIR([build-aux])

» One condition: it must be placed before the calls to AM_INIT_AUTOMAKE and
LT_INIT

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 97/99

Demo 21

Questions?

Thomas Petazzoni
thomas.petazzoni@free-electrons.com

Slides under CC-BY-SA 3.0

http://free-electrons.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/
Demos: https://github.com/tpetazzoni/autotools-demo

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 99/99

http://free-electrons.com/pub/conferences/2016/elc/petazzoni-autotools-tutorial/
https://github.com/tpetazzoni/autotools-demo

	User point of view
	autoconf basics
	automake basics
	autoconf advanced
	automake advanced

