
A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Challenges of Using V4L2 to Capture
and Process Video Sensor Images

October 27, 2020

Eugen Hristev
© Copyright 2020, Microchip Technology, Inc.

Creative Commons BY-SA 3.0 license.

Corrections, suggestions, contributions and translations are welcome

2

Eugen Hristev

Embedded Linux Engineer at Microchip

Part of the MPU32 Linux team

Developing second stage and third stage bootloaders

Developing Linux kernel device drivers

Maintaining and developing Microchip V4L2 drivers:
Atmel sensor controller, atmel sensor interface

3

Agenda

How digital sensors work

What happens with digital data until it is turned into a real
photo

Issues that can occur during this process

How can V4L2 help tuning dedicated hardware and
software in getting better picture quality

4

System diagram

Image sensor

Bayer interpolation

(edge detection)

WB correction

Gains, offsets
exposure correction

Contrast settings,

Brightness settings

Resulting image

User (v4l2-ctl)

User

space

Kernel

space

V4L2 subsystem interface

Hardware pipeline

/dev/videoX

Sensor controller driver

Pixel stream

Pixel stream

Pixel stream Pixel stream

5

Digital video sensor

How does a sensor work ?

6

Capture the light

Sensors operate by capturing ambient light
Sensors have an array of light sensitive pixels

BAYER array

7

BAYER array

Why do we have more green pixels than red/blue pixels ?

Why was this pattern chosen ?

Why each pixel has only one color ?

Do we lose color information ?

How do we convert pixel color into bits ?

How do we get a real photo out of this pattern ?

8

Pixel data inside controller

We have pixel data. What is next ?

9

BAYER interpolation

Each pixel will obtain information from its neighbors

10

What can go wrong ?

We interpolate. But is this flawless ?

11

The edge problem

Pitfall of the demosaicing

12

The edge problem

Pitfall of the demosaicing

13

The edge problem

What can we do ?

Edge interpolation : sometimes, but not always !

14

Inside the system

Image sensor

Bayer interpolation

(edge detection)

Resulting image

User (v4l2-ctl)

User

space

Kernel

space

V4L2 subsystem interface

Hardware pipeline

/dev/videoX

Sensor controller driver

Pixel stream

Pixel stream

15

The color problem

How we see the light

16

Light has a temperature

17

Temperature and color

18

Temperature and color
What color is the water in this photo ? What about the rock ?

19

Temperature and color
What about now ?

20

What the human brain can see

Remember old black and white photos ?

Can you actually see colors in black and white ?

21

What the human brain can see

What about Sepia ?

The sensor does not have a brain !

We will need to adjust the color such that they look more natural in the specific light of the
scenery

22

What the human eye sees

Before white

balancing

After white

balancing

23

What the human eye sees

Before white

balancing
After white

balancing

24

What the human eye sees

After white

balancing

Before white

balancing

25

What the human eye sees

After white

balancing

Before white

balancing

26

What can we do to adapt ?

We need to teach the sensor to adapt

27

Question 1:

What is the average color of this photo ?

28

Question 2:

What is the average color of this photo ?

29

Grey world

We need to make sure that Grey is grey for us, and grey for the
sensor. In the ambient light, of course...

30

Algorithm inside the driver

We need four frames captured.

The hardware will compute a color histogram of each BAYER
component

This will tell us how much of each color we have in the frame.
Will count the number of pixels versus the pixel value.

By histogram, this is greenish, with
low blue

31

Algorithm inside the driver

We need to apply Grey World: everything is Grey !

Adjust gains and offsets such that the histogram will be nearly identic for each component.

Compute the average of R, B, RG, BG. This is

Keep Green as a constant and adjust gains for red and blue, by dividing with the average,

for each channel,

Ideally, we should see that the blue component will be aligned with the others.

Ʋ𝐾𝑖,𝑗 =
𝐾𝑖,𝑗

Ǉ𝐾

Ǉ𝐾

Ʋ𝐾𝑖,𝑗

32

Algorithm inside the driver

We need four frames captured.

The hardware will compute a color histogram of each BAYER
component

This will tell us how much of each color we have in the frame.
Will count the number of pixels versus the pixel value.

Histogram is now aligned and

stretched

33

Gains and offsets

User Controls

brightness 0x00980900 (int) : min=-1024 max=1023 step=1 default=0 value=0 flags=slider

contrast 0x00980901 (int) : min=-2048 max=2047 step=1 default=16 value=16 flags=slider

white_balance_automatic 0x0098090c (bool) : default=1 value=1 flags=update

do_white_balance 0x0098090d (button) : flags=inactive, write-only, volatile, execute-on-write

gamma 0x00980910 (int) : min=0 max=3 step=1 default=3 value=3 flags=slider

red_component_gain 0x009819c0 (int) : min=0 max=8191 step=1 default=512 value=512 flags=inactive, slider, volatile

blue_component_gain 0x009819c1 (int) : min=0 max=8191 step=1 default=512 value=512 flags=inactive, slider, volatile

green_red_component_gain 0x009819c2 (int) : min=0 max=8191 step=1 default=512 value=512 flags=inactive, slider, volatile

green_blue_component_gain 0x009819c3 (int) : min=0 max=8191 step=1 default=512 value=512 flags=inactive, slider, volatile

red_component_offset 0x009819c4 (int) : min=-4095 max=4095 step=1 default=0 value=0 flags=inactive, slider, volatile

blue_component_offset 0x009819c5 (int) : min=-4095 max=4095 step=1 default=0 value=0 flags=inactive, slider, volatile

green_red_component_offset 0x009819c6 (int) : min=-4095 max=4095 step=1 default=0 value=0 flags=inactive, slider, volatile

green_blue_component_offset 0x009819c7 (int) : min=-4095 max=4095 step=1 default=0 value=0 flags=inactive, slider, volatile

V4L2 to the rescue:

34

Do white balance button

User Controls

brightness 0x00980900 (int) : min=-1024 max=1023 step=1 default=0 value=0 flags=slider

contrast 0x00980901 (int) : min=-2048 max=2047 step=1 default=16 value=16 flags=slider

white_balance_automatic 0x0098090c (bool) : default=1 value=0 flags=update

do_white_balance 0x0098090d (button) : flags=write-only, execute-on-write

gamma 0x00980910 (int) : min=0 max=3 step=1 default=3 value=3 flags=slider

red_component_gain 0x009819c0 (int) : min=0 max=8191 step=1 default=512 value=930 flags=slider

blue_component_gain 0x009819c1 (int) : min=0 max=8191 step=1 default=512 value=3198 flags=slider

green_red_component_gain 0x009819c2 (int) : min=0 max=8191 step=1 default=512 value=549 flags=slider

green_blue_component_gain 0x009819c3 (int) : min=0 max=8191 step=1 default=512 value=714 flags=slider

red_component_offset 0x009819c4 (int) : min=-4095 max=4095 step=1 default=0 value=-128 flags=slider

blue_component_offset 0x009819c5 (int) : min=-4095 max=4095 step=1 default=0 value=-48 flags=slider

green_red_component_offset 0x009819c6 (int) : min=-4095 max=4095 step=1 default=0 value=-152 flags=slider

green_blue_component_offset 0x009819c7 (int) : min=-4095 max=4095 step=1 default=0 value=-136 flags=slider

v4l2-ctl –set-ctrl=do_white_balance=1

[2528.410573] atmel-sama7g5-isc e1408000.xisc: Completed one time white-balance adjustment.

35

Do white balance button

36

Auto white balance (AWB)

Cameras will do this for you.

But how good is this ?

Is the scenery always grey ?

Experiment with your smartphone !

Other algorithms for white balance ?

Sensor correlation: find which of the elementary possible lights are there

Grey world variations: find the grey object in the scenery

Photoshop WB: Black is black, White is white.

Manual tuning ! Towards Embedded Linux Camera...

37

Inside the system

Image sensor

WB correction

Gains, offsets
Resulting image

User (v4l2-ctl)

User

space

Kernel

space

V4L2 subsystem interface

Hardware pipeline

/dev/videoX

Pixel streamPixel stream

Sensor controller driver

38

Light quantity
Does it matter how much light we capture ?

39

Exposure

How much light do we need to capture ?

Too much light

40

Again, trade-off

Too little light

41

Exposure
Again, histogram comes to our aid

42

Exposure

Autoexposure: adapt exposure to fit the histogram

43

Exposure

V4L2 controls directly to the subdevice

v4l2-ctl -L -d /dev/v4l-subdev1

User Controls

exposure 0x00980911 (int) : min=14 max=8333 step=1 default=8333 value=8260

gain 0x00980913 (int) : min=256 max=46088 step=1 default=5120 value=5120

vertical_flip 0x00980915 (bool) : default=0 value=0

44

Brightness

Positive brightness applied

v4l2-ctl -L

User Controls

brightness 0x00980900 (int) : min=-1024 max=1023 step=1 default=0 value=256

flags=slider

45

Brightness

Negative brightness applied

v4l2-ctl -L

User Controls

brightness 0x00980900 (int) : min=-1024 max=1023 step=1 default=0 value=-256

flags=slider

46

Brightness vs exposure

Why do we need brightness if we have exposure ?

Is the other way around true ?

What happens with pixel data ?

47

How can we adjust colors

Can we adjust the ratio between the chroma channels ?

To make it easier, use the YUV representation : adjust blue Chroma and red Chroma

V4L2 controls can alter this hardware block

48

Contrast

Low contrast applied

v4l2-ctl -L

User Controls

contrast 0x00980901 (int) : min=-2048 max=2047 step=1 default=16 value=8

flags=slider

49

Contrast

High contrast applied

v4l2-ctl -L

User Controls

contrast 0x00980901 (int) : min=-2048 max=2047 step=1 default=16 value=8

flags=slider

50

Brightness and Contrast

51

Inside the system

Image sensor

exposure correction

Contrast settings,

Brightness settings
Resulting image

User (v4l2-ctl)

User

space

Kernel

space

V4L2 subsystem interface

Hardware pipeline

/dev/videoX

Sensor controller driver

Pixel stream Pixel stream

52

Summary

Digital sensors need tuning

We can use a dedicated pipeline to achieve this

We can control the pipeline using Linux and V4L2

We can have an embedded Linux Camera ,
with sliders, buttons as interface

53

Summary

Image sensor

Bayer interpolation

(edge detection)

WB correction

Gains, offsets

exposure correction

Contrast settings,

Brightness settings

Resulting image

User (v4l2-ctl)

User

space

Kernel

space

V4L2 subsystem interface

Hardware pipeline

/dev/videoX

Sensor controller driver

Pixel stream

Pixel stream

Pixel stream Pixel stream

54

Demo time

55

Questions?

56

Resources and Availability

⚫ Atmel ISC driver which served as a base for this presentation
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/media/platform/atmel

⚫ Images from this presentation are licensed under CC-BA-SY license

⚫ Where license was not specified, some images source link was provided
⚫ Otherwise, all images are personal property of the author, and were taken with SAMA7G5-EK board with SAMA7G5 SoC,
using image sensor Sony imx219 and Sony imx274

https://arindamdhar.com/wp-content/uploads/2017/07/wb-button.jpg
https://www.pathpartnertech.de/wp-content/uploads/2020/03/Figure-1.jpg
https://starecat.com/content/wp-content/uploads/light-temperature-comparison-visual-1000k-to-10000k.jpg
https://www.xrite.com/categories/calibration-profiling/colorchecker-classic
https://a.fsdn.com/con/app/proj/v4l2ucp/screenshots/228307.jpg/max/max/1
https://i1.wp.com/digital-photography-school.com/wp-content/uploads/2016/01/
PlusMinusButton.jpg?fit=750%2C430&ssl=1
https://www.researchgate.net/publication/235350557_Combining_Gray-World_assumption_White-Point_
correction_and_power_transformation_for_automatic_white_balance
https://i.ytimg.com/vi/ZK0KX4uKhLM/maxresdefault.jpg

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/media/platform/atmel
https://arindamdhar.com/wp-content/uploads/2017/07/wb-button.jpg
https://www.pathpartnertech.de/wp-content/uploads/2020/03/Figure-1.jpg
https://starecat.com/content/wp-content/uploads/light-temperature-comparison-visual-1000k-to-10000k.jpg
https://www.xrite.com/categories/calibration-profiling/colorchecker-classic
https://a.fsdn.com/con/app/proj/v4l2ucp/screenshots/228307.jpg/max/max/1
https://i1.wp.com/digital-photography-school.com/wp-content/uploads/2016/01/
https://www.researchgate.net/publication/235350557_Combining_Gray-World_assumption_White-Point
https://i.ytimg.com/vi/ZK0KX4uKhLM/maxresdefault.jpg

