

Measuring Function Duration
with Ftrace

By Tim Bird
Sony Corporation of America
<tim.bird (at) am.sony.com>

On ARM

Outline
 Introduction to Ftrace
 Adding function graph tracing to ARM
 Duration Filtering

− Trace coverage rate analysis
 Measuring kernel boot
 Post-trace analysis tools
 Performance impact
 Resources

Introduction to Ftrace
 What is Ftrace?
 Overview of operation

− Instrumentation
− Runtime operation
− Data capture
− Trace log output

 Function duration tracing

What is Ftrace?
 Ftrace is the first generic tracing system to

get mainlined (Hurray!!)

g

− Mainlined in 2.6.27
− Derived from RT-preempt latency tracer

 Provides a generic framework for tracing
− Infrastructure for defining tracepoints
− Ability to register different kinds of tracers
− Specialized data structure (ring buffer) for

trace data storage

Overview of FTrace Operation
 Instrumentation

− Explicit
 Tracepoints defined by declaration
 Calls to trace handler written in source code

− Implicit
 Automatically inserted by compiler

− Uses gcc ‘-pg’ option
 Inserts call to ‘mcount’ in each function prologue
 Easy to maintain – no source code modifications
 Only practical way to maintain 20,000+ tracepoints

mcount Routine
 ‘mcount’ is called by every kernel function

− Except inlines and a few special functions
 Must be a low-overhead routine
 Incompatible with some compiler optimizations

− E.g. cannot omit frame-pointers on ARM

E

− Compiler disables some optimizations automatically
− Works with ARM EABI
− Analysis of assembly indicates that mcount callers

have well-defined frames

h

 Misc note:
− New mcount routine (_gnu_mcount) is coming

Code to Call mcount

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4

57c: e3a00001 mov r0, #1 ; 0x1
580: ebffffa0 bl 408 <do_sync>
584: e3a00000 mov r0, #0 ; 0x0
588: e89da800 ldmia sp, {fp, sp, pc}

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e1a0c00e mov ip, lr
580: ebfffffe bl 0 <mcount>
584: 00000028 andeq r0, r0, r8, lsr #32
588: e3a00001 mov r0, #1 ; 0x1
58c: ebffff9d bl 408 <do_sync>
590: e3a00000 mov r0, #0 ; 0x0
594: e89da800 ldmia sp, {fp, sp, pc}

Trace setup at run-time
 Pseudo-files in debugfs

− e.g. mount debugfs –t debugfs /debug
 Select a tracer

− e.g. echo function_duration >current_tracer
 Set tracing parameters

− e.g. echo 100 >tracing_threshhold
− echo duration-proc >trace_options

Trace Data Capture
 Ring Buffer

− Specialized structure for collecting trace data
 Manages buffer as list of pages

− Latest version is lockless for writing
 Ability to atomically reserve space for an event

− Automatic timestamp management
− Per-cpu buffers

 Avoids requiring cross-CPU synchronization
 Also avoids cache collisions

− Very important for performance

Trace Output
 Output is human readable text

− No special tools required to collect trace data
 Examples:

− cat trace
 Returns EOF at end of trace data

− cat trace_pipe | grep foo >log.txt
 Blocks at end of trace data

 Quick enable/disable
− echo 0 >tracing_enabled

Ring Buffer Operations
 ring_buffer_lock_reserve

− Atomically reserve space in buffer
 ring_buffer_event_data

− Get pointer to place to fill with data
 ring_buffer_unlock_commit

− Commit event data
 ring_buffer_discard_commit

− Discard reserved data space

Function duration tracing
 Traces function entry and exit
 What is it good for?

− See relationship between functions
 Is a GREAT way to learn about kernel
 Find unexpected/abnormal code paths

− Measure function duration
 Find long latencies and performance problems

 But, the -pg option only instruments
function entry

Hooking function exit
 Normal ‘function’ tracer just traces function

entry capture
 To capture function exit, a trampoline is

used
− mcount:

 Saves real return address
 Replaces return address with address of

trampoline
− In exit tracer, return to the real return address

Diagram of Trampoline
Caller

Function

Func exit
Tracer

mcount

Func entry
Tracer

Thead_info
struct ret_stack

Stack

caller 1
caller 2

ret addr

Why Filter by Duration?
 To extend the capture duration time

− By reducing, at runtime, the amount of trace
data

− Without a duration filter, you can only capture
about 0.4 seconds worth of data

 To see only long-duration functions
− When looking for long-lasting functions, you

don’t need to see the short ones (in most
cases)

Filtering by Duration - first try
 Added duration filter to 'function_graph' tracer
 Method:

− Compare duration to threshhold
− Discard function entry and exit events

 Its easy to discard exit event
− Just don’t commit data

 Trickier to discard entry event
− ring_buffer_event_discard() converts event to

padding if subsequent events have been
committed to buffer

 Wastes a lot of space
 Severely constrains the time coverage for a trace

Filtering by Duration - second try
 Created new 'function_duration' tracer
 Method:

− Don't save function entries to trace log at all
 Only save call time on function return stack

− At function exit, compare duration to threshhold
− Omit exit entry events for short duration

functions
 Results in simpler, and faster code
 Only issue is that log is displayed in order of

function exit (not function entry)
− Can be solved with a simple sort on trace output

Trace time coverage:
graph vs duration tracer

† The test finished without filling the buffer.

208

3943

27597

26438

26630

27316

Trace
Event
Count

2868.00 s21.31 s †2.795M100000Duration

154.00 s21.70 s †2.788M1000Duration

0.38 s0.38 s2.906M0Duration

1.34 s1.34 s3.309M100000Graph

1.39 s1.29 s3.310M1000Graph

0.39 s0.39 s3.295M0Graph

Projected
Trace Time
Coverage

Time
Covered
by Trace

Total
Function

Count

Duration
Filter
Value

Tracer

= Estimate

Example of Use
$ mount debugfs -t debugfs /debug
$ cd /debug/tracing
$ cat available_tracers
function_graph function_duration function sched_switch nop
$ echo 0 >tracing_enabled
$ echo 100 >tracing_thresh
$ echo function_duration >current_tracer
$ echo 1 >tracing_enabled ; do \
 ls /bin | sed s/a/z/g ; done ; echo 0 >tracing_enabled
$ echo duration-proc >trace_options
$ cat trace >/tmp/trace.txt
$ cat /tmp/trace.txt | sort –k3 > /tmp/trace.txt.sorted

Function Duration Results (sorted)

F

tracer: function_duration
#
CPU TASK/PID CALLTIME DURATION FUNCTION CALLS
| | | | | | | | | |
 0) sed-562 | 502.854252393 | ! 436.833 us | bprm_mm_init
 0) sed-562 | 502.854254893 | ! 321.500 us | mm_alloc
 0) sed-562 | 502.854270893 | ! 296.500 us | mm_init
 0) sed-562 | 502.854279393 | ! 266.166 us | get_pgd_slow
 0) sed-562 | 502.854744059 | ! 229.500 us | prepare_binprm
 0) sed-562 | 502.854765393 | ! 198.666 us | kernel_read
 0) sed-562 | 502.854769226 | ! 183.333 us | vfs_read
 0) sed-562 | 502.854780393 | ! 142.000 us | do_sync_read
 0) sed-562 | 502.854785559 | ! 120.667 us | nfs_file_read
 0) sed-562 | 502.854982393 | ! 538.000 us | copy_strings_kernel
 0) sed-562 | 502.854985726 | ! 521.667 us | copy_strings
 0) sed-562 | 502.854993893 | ! 470.000 us | get_arg_page
 0) sed-562 | 502.854997226 | ! 455.500 us | get_user_pages
 0) sed-562 | 502.855000059 | ! 421.667 us | __get_user_pages
 0) sed-562 | 502.855031393 | ! 285.666 us | handle_mm_fault
 0) sed-562 | 502.855037726 | ! 101.833 us | __pte_alloc

Measuring kernel boot
 Can start tracer early in boot sequence
 Use “ftrace=function_duration” on kernel

command line
− Can specify “tracing_thresh=<value>”

 Tracer is initialized after kernel core (timers,
memory, interrupts), but before all initcalls

− On my hardware, tracer starts about 50
milliseconds after start_kernel()

m

 Had to restore instrumentation to functions in
_init segment

 Need to stop trace after point of interest

Introducing a stop trigger
 Use “trace_stop_fn=<func_name>” on

kernel command line
 Trace stops on ENTRY to named function
 To use, figure out a fairly unique function,

which runs immediately after the area of
interest

 An initcall works very well
− Initcall functions have unique names in kernel

Example of early boot trace
 To trace most of kernel boot:

− Add this to the kernel command line:
 “ftrace=function_duration tracing_thresh=200

trace_stop_fn=run_init_process”
− If the trace doesn't cover the whole boot,

increase tracing_thresh and try again
 To trace an individual initcall:

− Find initcall following the one you are
interested in

 Can use initcall_debug on kernel command line
 ex: pty_init follows tty_init

− Kernel command line:
 “ftrace=function_duration trace_stop_fn=pty_init”

Post-trace analysis
 fdd tool is provided to analyze data
 What fdd shows:

− function counts, total time, average duration
− sub-routine with the longest duration, how many times

it was called
− Local time = total time minus sub-routine total time

 Is approximately the cost of the local execution of a function
 Notes:

− Total time may be wrong if process is scheduled out
or if a filter was active

 May need an option to subtract time that function was
scheduled out

− You can filter, sort, select output columns,etc.

fdd Output
$ fdd /tmp/trace.txt –n 15
Function Count Time Average Local
----------------------------------- ----- ---------- -------- ----------
schedule 59 1497735270 25385343 1476642939
sys_write 56 1373722663 24530761 2892665
vfs_write 56 1367969833 24428032 3473173
tty_write 54 1342476332 24860672 1212301170
do_path_lookup 95 1076524931 11331841 34682198
__link_path_walk 99 1051351737 10619714 6702507
rpc_call_sync 87 1033211085 11875989 1700178
path_walk 94 1019263902 10843233 3425163
rpc_run_task 87 960080412 11035407 2292360
rpc_execute 87 936049887 10759194 2316635
__rpc_execute 87 932779083 10721598 11383353
do_lookup 191 875826405 4585478 9510659
call_transmit 100 785408085 7854080 5871339
__nfs_revalidate_inode 38 696216223 18321479 1652173
nfs_proc_getattr 38 690552053 18172422 1234634

Performance issues
 Overhead of tracing can be big

− Average function duration = 3.22 μs
− Overhead = 11.4 microseconds per function

 Use a CPU-bound test to measure
overhead

− “find /sys >/dev/null”
− With an I/O-bound test (or a real-workload),

the ratio of overhead to average function
duration should be lower

 With ftrace compiled into kernel, but the
'NOP' tracer selected, the overhead in my
test was about 12%

Overhead Measurements

4.42 us7.64 us2.803M21.43 sthresh=1000000

4.42 us7.64 us2.802M21.40 sthresh=1000

5.48 us8.70 us2.824M24.58 sthresh-=100

7.61 us10.83 us2.850M30.87 sthresh=10

11.42 us14.64 us2.923M42.80 sthresh=1

11.40 us14.62 us2.911M42.55 sTracer=duration,
thresh=0

4.44 us7.66 us2.816M21.57 sTracer=duration,
enabled=0

0.39 us3.61 us2.757M *9.94 sTracer=nop

-3.22 us2.751M *8.85 sTRACE=n

Overhead per
function

Time per
function

Function
count

Elapsed
time

Tracer status

* = estimated

Roadmap and future work
 Mainline try 2

− Patches:
 ARM function graph assembly support

A

 function_duration tracer
 changes to ftrace for use at boot time

 Need to use functionality to improve
bootup time

− Have already identified a few problems
 call_usermode_helper
 ip_auto_config

References
 Ftrace tutorial at OLS 2008

− http://people.redhat.com/srostedt/ftrace-tutorial.odp

− Video: http://free-electrons.com/pub/video/2008/ols/

ols2008-steven-rostedt-ftrace.ogg

 “The world of Ftrace” at Spring 2009 LF
Collaboration Summit

− http://people.redhat.com/srostedt/ftrace-world.odp

 Patches and tools for this talk
− http://elinux.org/Ftrace_Function_Graph_ARM

Questions & Answers

	Measuring Function Duration with Ftrace
	Outline
	Introduction to Ftrace
	What is Ftrace?
	Overview of FTrace Operation
	mcount Routine
	Code to Call mcount
	Trace setup at run-time
	Trace Data Capture
	Trace Output
	Ring Buffer Operations
	Function duration tracing
	Hooking function exit
	Diagram of Trampoline
	Why Filter by Duration?
	Filtering by Duration - first try
	Filtering by Duration - second try
	Trace time coverage: graph vs duration tracer
	Example of Use
	Function Duration Results (sorted)
	Measuring kernel boot
	Introducing a stop trigger
	Example of early boot trace
	Post-trace analysis
	fdd Output
	Performance issues
	Overhead Measurements
	Roadmap and future work
	References
	Questions & Answers

