

Using a Lidar for Robot Navigation in a Room

Mike Anderson

Chief Scientist

The PTR Group, Inc. http://ThePTRGroup.com mike@theptrgroup.com

Copyright 2017, The PTR Group, Inc.

Who is The PTR Group?

- ★The PTR Group was founded in 2000
- ★We are involved in multiple areas of work:
 - Robotics (NASA space arm)
 - Flight software (over 35 satellites on orbit)
 - Offensive and defensive cyber operations
 - I'll leave this to your imagination ©
 - Embedded software ports to RTOS/Linux/bare metal
 - ▶ IoT systems architecture and deployment

Speaker/Author Details

- Website:
 - http://www.theptrgroup.com
- Email:
 - mailto:mike@theptrgroup.com
- Linked-in:
 - https://www.linkedin.com/in/mikeandersonptr
- Twitter:
 - @hungjar

Almost 40 years in the embedded and real-time industry for both commercial and Government customers.

What We'll Talk About...

- ★What is a Lidar?
- ★What options exist?
- ★Why put it on a robot?
- ★How did it work?
- **★**Summary

What is a Lidar?

- * A lidar (a.k.a, LIDAR, LiDAR, LADAR) is an abbreviation for Light Detection and Ranging
 - Essentially, a light-based version of radar
 - We'll use the lower case so it doesn't look like we're shouting ©
- * Lidars most frequently use time of flight measurement for a laser pulse to be reflected off of a target to determine its range
- ★ The frequency of the laser light is a concern
 - ▶ 600-1000nm is most common for non-scientific applications
- ★ Unfortunately, these frequencies can be focused and absorbed by the human eye
 - Therefore, the power needs to be limited to Class 1
- ★ High-performance lidars tend to use 1550nm frequencies
 - Not easily absorbed by the eye so you can use higher powers

How does Lidar Work?

- Most lidars use a time-of-flight calculation between when the laser pulse is sent and when it reflects off an object
- ★ Then, triangulation is used based on the detector's distance from the laser source to the laser detector to determine the distance
 - That's why many lidars have two "eyes"

Source: hackaday.com

Where are Lidars Being Used?

- ★Lidars were originally designed for surveying applications
 - Used to make high-resolution,
 3D maps from airborne platforms like satellites, aircraft and drones
- ★Also used in self-driving cars and for 3D modeling

Source: Geo-Plus.com

Source: Geo-Plus.com

Single Point Lidars

- Depending on the application, lidars can be either a single point-and-shoot distance measurement or be built to run in scanning mode
- ★ The point-and-shoot variety are often found in laser-based measuring tapes
- ★ Single point lidars can now be had for ~ \$150
 - Like the Garmin lidar from various vendors
- ★ It's possible to mount a single-point lidar on a spinning platform to make it a scanning lidar
 - ▶ I tried this, but wire-management and balancing the load on the platform proved to be difficult

Source: walmart.com

Scanning Lidars

- Scanning lidars typically spin and measure distance in a full 360 degree circle
 - Scanning lidars are considerably more expensive than point-and-shoot types
- Scanning lidars have a spinning frequency as well as a pulse duration
 - ▶ This determines the number of distance measurements you can produce per second
- ★ Your interface and controller must be able to keep up with the data rate
 - ▶ I2C, PWM, SPI and serial are all common interfaces
- ★ Inexpensive scanning lidars start in the \$400 range and go up in price quickly

Source: robotshop.com

Source: sparkfun.com

Commercial Drone Lidars

- ★There are a number of manufacturers of commercial drones equipped with scanning lidar systems
- ★However, the weight of the lidar and the amount of power that it uses limit the drone's time aloft
- ★Still, they are neat if you can afford the \$120K price tag

Source: altigator.com

ELC-Portland-0217-10

Cheap Scanning Lidars

- ★ The Neato cleaning robot is known to have a scanning lidar built in
- ★ There are teardowns on sites like Sparkfun for how to extract it
 - And, some instructions for how to interface to it
- ★ Just the lidar can be purchased from eBay for about \$120
 - ▶ But, a new cleaning robot unit will be \$400

Robots and SLAM

- ★ Simultaneous localization and mapping (SLAM) is an approach for creating a map of an unknown environment while keeping track of an agent's location within the environment
 - ▶ Defined by this simple equation ②:

$$P(x_t|o_{1:t},m_t) = \sum_{m_{t-1}} P(o_t|x_t,m_t) \sum_{x_{t-1}} P(x_t|x_{t-1}) P(x_{t-1}|m_t,o_{1:t-1}) / Z$$

- SLAM can be performed using different measurement modalities
 - Ultrasonic, infrared or various forms of lidar
- FWIW, Google has just released their SLAM algorithms for their self driving cars
 - But, they're really not optimized for hobby use
- And, for a proper SLAM implementation, you will also need an inertial measurement unit (IMU) sensor package
 - ▶ X/Y/Z accelerometer, X/Y/Z gyroscope, X/Y/Z magnetometer at a minimum

Source: linked-in.com

Creating a Point Cloud

- ★ The field of view can be thought of as a collection of individual measurements yielding points in the 2D or 3D field of view
 - ▶ This is referred to as a *point cloud*
- ★ These can be imported into an application like Blender for rendering or graphed using Processing, python, etc.
 - ▶ Alternatively, you can plot them in Matlab, etc.

Source: blenderartists.org

Creating a Robot

- Creating a robot involves a lot of time and attention to detail
- Topics to address include:
 - What's supposed to do?
 - Mobility (wheels, tracks, hovercraft, flying drone, etc.)
 - Motor controllers (power draw, sustained current vs. instantaneous current and stall current of the motors)
 - Motor types (brushed or brushless)
 - Powering the motors (battery chemistry such as NiMH, LiPo, LiFe, etc.)
 - What controller will you use (uC, Linux, dedicated controller, etc.)
 - Powering the controller (maintaining a consistent power source)
 - Sensor packages (ultrasonic, lidar, camera, altitude, GPS, etc.)
 - Wireless link type (distance and interference are the major issues)
 - Software for the motor controllers and software for the main controller
 - Even more...

Linux and Motor Controllers

- Many of the inexpensive motor controllers use RC-hobby servo type PWM signals
 - ▶ Usually running at about 50 Hz with pulse widths in the 0.5-2.5 ms range
- 0,5 ms 15-25 ms 15-25 ms 15-25 ms 15-25 ms

★ The variation of the pulse width makes the device move forward or backwards or controls the speed

Source: stackexchange.com

- While servos themselves are fairly tolerant, many motor controllers are less so
 - ▶ A little jitter in the signal can cause a motor to self destruct
- ★ So, while the real-time patch for Linux does reasonably well for most things, the jitter can be an issue
 - The use of uCs like the Sitara PRU or Arduinos can be used to address the jitter problem

What do I want my Robot to do?

- ★ In my case, I wanted a way to experiment with the new lidar models that are coming onto the market
 - I'm a FIRST Robotics mentor, so range finding is often part of the challenge every year
- ★ I also wanted to start playing with SLAM approaches to help make the robots more autonomous
 - My student drivers are getting overwhelmed with the amount of data that's available
- * I'm also considering adding voice enablement to create a "companion" bot for seniors
 - Something they can naturally interact with but can also remind them to eat meals and take their medications on time
 - · But, it also must navigate through the house autonomously for health and status checking
- However, simply mapping a playing field or simply the room so you can do obstacle avoidance is a good place to start

Choosing a Robot Platform

- I've built many large (100lbs+) robots and a few smaller platforms with wheels
 - They're too hard to transport and TSA goes nuts when they X-Ray my luggage
 - The batteries are also a problem
- ★ So, I wanted something different
 - Small and tracked sounded neat
- ★ Dual 9V motors w/ 4.5A stall current
 - Unfortunately, not much mounting space, as I discovered later
- And, the stall current puts the motors beyond the typical L298 H-bridge motor controllers
 - They typically max out at 2A

Source: amazon.com

Plans for the Controls

- I've used both the Raspberry Pi and the Beaglebone for robots in the past
 - I wanted both Bluetooth and Wi-Fi
 - But, I was concerned for the compute load that the lidar would put on the controller
 - So, I went with the Raspberry Pi 3
- ★ I also wanted to avoid the PWM jitter issue, so I used an Arduino and a high-power motor controller
 - ▶ Max current 30A, sustained 14A and max voltage 16v
 - Some soldering required
- ★ The Arduino was available as a Raspberry Pi "hat" that plugged into the Pi and provided a functional "Leonardo" equivalent board

Source: amazon.com

Source: sparkfun.com

Source: dirobot.com

Plans for the Controls (2)

- Powered from a 5A 9.6v RC car battery
 - ▶ This can't be used to power the Pi directly
 - I used an RC aircraft universal battery eliminator circuit (UBEC) for 5V
- ★And, I found this nifty USB Micro B breakout board for getting power to the Pi
 - Available from Sparkfun
- *Assembling and wiring the robot took several days

Source: amazon.com

Source: amazon.com

Source: sparkfun.com

Choosing the Lidar

- * I have several of the Garmin lidar units
 - Great for attaching to a servo for obstacle avoidance
 - You can scan back and forth looking for objects
- *But, I wanted to try a 360° scanning lidar
 - I've seen the Uber self-driving cars in Pittsburgh and I thought a scanning lidar would be cool
- * So, I opted for the RPLIDAR A2 unit from Slamtec
 - 4K samples/s @ 10Hz, 600 RPM

Source: robotshop.com

Source: slamtec.com

Wiring it up

- * The motor controller is built as an Arduino shield
 - External power for the motors via the shield
 - The motors get wired directly to the shield
- ★ I can talk to the Arduino and the RPLIDAR via RS-232 UART connections
- ★ I need 5V@2A for the Raspberry PI 3
 - ▶ 9.6V will work for the motor controller
- ★ Use the UBEC for 5V to power the Pi and the Arduino hat and power the motor controllers directly
- I'll just disconnect my battery using Anderson power poles as a power switch

The Finished Robot

- * After several days... I finally have a mechanically finished robot!
- ★ The lidar is mounted on the back of the bot to provide room to mount other sensors like a 9DOF IMU that are below the lidar's scan height
- ★ I also mounted a USB camera on the front of the bot so I could see where I'm going
 - ▶ Tux is optional... [©]

Software Anyone?

- ★ A software example for the Arduino and the motor controller is provided by Sparkfun
 - Some tweaks needed to be able to control it from the Pi via the serial port
- ★ I needed to write software to control the RPLIDAR and take its samples and then forward them to something that could use the data for plotting.
 - ▶ SLAMTEC offers an SDK for C/C++ in Linux
- ★ However, the path of least resistance for SLAM code appeared to be the Robot Operating System (ROS)
 - http://www.ros.org/
 - ▶ They have instructions for installation on Raspberry Pi 3 using Ubuntu MATE (16.04.2 LTS) and Raspian Jessie
- ★ The most complete instructions for ROS (and a prebuilt set of packages) seemed to be for Ubuntu MATE

Installing ROS

- ★ Just search for "install ROS raspberry pi" and you'll find several sets of instructions depending on what distro you're running on the Pi
 - ▶ I found references to the RPLIDAR on http://hackaday.io to try and get it working for an older version of ROS
- * ROS is a pretty complete system for robot control
 - But, it's big and takes a while to figure out what's needed
- ROS supports a pub/sub approach for data collection and monitoring
- * Fortunately, there's a wiki for the RPLIDAR on the ROS site
 - http://wiki.ros.org/rplidar

Software Pieces

- ★ Ubuntu MATE 16.04 with modifications for:
 - Running the Pi in AP mode so I can connect to it
 - Set fixed IP address for the AP and "pi-robot" SSID
 - Installed tightvncserver and openssh for remote access
 - Set up Avahi to announce the "pi-robot" via mDNS so we can find it when we try to connect
 - Support for the camera
 - I'm just using cheese at the moment, but hope to hook in ROS
- ★ The motor controller is controlled via the Arduino serial port
 - ▶ So, I wrote software for driving the robot using an Xbox controller in Linux and it relays to the robot using TCP
- * ROS is currently being used for the RPLIDAR only
 - I'm still in the learning process for everything that ROS can do
- * All of this will be in a github repository (user ID: taichichuan) as soon as I get everything debugged

Scan from the Lidar

- ★Using ROS code, I have the lidar scanning
- ★The output is pretty crude because I don't have all of the SLAM software running yet

▶ I also need to integrate ROS-compatible IMU for the SLAM functions

Current Status

- * The wireless communication software and motor control are working
- ★ The lidar is also scanning and producing lots of distance measurement information
- ★ No integrated IMU yet
- ★ Unfortunately, after I got everything built, I discovered that one of the gearboxes was totally borked ②
 - I'm waiting on a replacement which is why I don't have the robot here
- ★ If I can't get a replacement from the Kookye folks, I've already ordered an alternative platform
- * As soon as I have everything put back together and working, I'll post it up on github
 - If you're interested, send me an email and I'll let you know when it's posted

Source: amazon.com

Summary

- * This first attempt at using a lidar has been an interesting exercise
 - ▶ Lots of money and time invested and only a few crude pictures to show for it so far ⊗
- * Linux can definitely handle the process with aplomb
 - I'd like to transition to the Beaglebone and use the PRUs for motor control instead of an Arduino
 - Maybe switch to the Linux drone code base
- ★ The mechanicals can be daunting
 - ▶ Power, wiring, interconnects, etc. plus the motors and motor control are a challenge
 - · Building a mid-sized robot was new to me
- I'm looking forward to getting the unit back online and continuing with the software process
 - ROS and Linux drone code both look attractive moving forward

