
LG Electronics / Software & Solution 센터센터센터센터

S/W D Gr. 서희서희서희서희 (seohee@lge.com)

2008. 2. 22

ARM Procedure Call Standard
(Subtitle : The Implementation of backtrace function)

I. Introduction

II. __builtin_return_address usage

III. APCS (Arm Procedure Call Standard)

IV. Implementation of simple backtrace function

V. Conclusion

Great Company Great People 1

Introduction

� Assumption

� Wrong arguments of function cause segmentation fault

� It is very popular function and is called by many functions!

� Trouble

� Which of the functions does the problem come from?

� How to get start?

� In the time of executing segmentation fault handler, the stack has a lot of information for

debugging such as return address of functions, CPU context and so on.

� If we get return address of functions from stack, we can see function's call history called

as 'backtrace information'.

� __builtin_return_address

Great Company Great People 2

__builtin_return_address usage

� `__builtin_return_address (LEVEL)

� Getting the Return of a Function

� This function returns the return address of the current function, or of one of its callers.

The LEVEL argument is number of frames to scan up the call stack.

� Trouble

� Sometimes __builtin_return_address function is not working or can get the only

information of level ‘0’

Great Company Great People 3

APCS (Arm Procedure Call Standard) [1/8]

� The APCS defines:

� restrictions on the use of registers

� conventions for using the stack

� passing/returning arguments between function calls

� the format of a stack-based structure which may be 'backtraced' to provide a list of

functions (and parameters given) from the failure point backwards to the program entry

� Compiler option : -apcs

Great Company Great People 4

APCS (Arm Procedure Call Standard) [2/8]

link addresslr14register variable 3v36

program counterpc15register variable 4v47

Lower end of current stack framesp13register variable 2v25

scratch reg. / new sb in inter-link-unit

calls
ip12register variable 1v14

frame pointerfp11argument 4 a43

stack limit

/ register variable 7

sl/v710argument 3 a32

Static base

/ register variable 6

sb/v69argument 2 a21

register variable 5v58

argument 1

integer result

a10

APCS RoleAPCSregAPCS RoleAPCS

Great Company Great People 5

APCS (Arm Procedure Call Standard) [3/8]

� Both the ARM and Thumb instruction sets contain a primitive subroutine call

instruction, BL, which performs a branch-with-link operation.

� Subroutine call

� For example in ARM-state, to call a subroutine addressed by r4 with control returning to

the following instruction, do:

MOV LR, PC (PC register value will be saved into LR register.)

BX r4 (Jump subroutine)

� Subroutine return

MOV PC, LR (restore LR register value to PC)

Great Company Great People 6

APCS (Arm Procedure Call Standard) [4/8]

� Parameter Passing

� Passing arguments: core registers (r0-r3) and on the stack

� For subroutines that take a small number of parameters, only registers are used.

� Passing argument for long long type: pair of consecutive argument registers

(e.g., r0 and r1)

� Return value

� Integer or pointer: r0

� Two-word: r0 and r1

Argument 3

Argument 2

Argument 1

Argument 0

r3

r2

r1

r0 Return value

Argument 5

Argument 4sp

sp-8

sp-4

Argument 6

Great Company Great People 7

APCS (Arm Procedure Call Standard) [5/8]

� Stack

� Linked list of 'frames' which are linked through what is known as a 'backtrace structure‘

� Stored at the high end of each frame

� Allocated in descending address order

� The register sp

● Point to the lowest used address in the most recent frame.

Great Company Great People 8

APCS (Arm Procedure Call Standard) [6/8]

� Backtrace

� The register fp (frame pointer) should be zero, or it should point to the last in a list of

stack backtrace structures which will provide a means of 'unwinding' the program to trace

backwards through the functions called

save code pointer [fp] fp points here
return ip value [fp, #-4]

return link value [fp, #-8]
return pc value [fp, #-12]
return fp value [fp, #-16] points to next structure
[saved other registers]

Great Company Great People 9

APCS (Arm Procedure Call Standard) [7/8]

int main(void)

{

one();

return 0;

}

void one(void)

{

zero();

two();

return;

}

void two(void)

{

printf("main...one...two\n");

return;

}

void zero(void)

{

return;

}

zero_structure

return pc

return link

return ip

return fp

…

one_structure

return pc

return link

return ip

return fp

…

main_structure

return pc

return link

return ip

return fp

…

fp

0

Great Company Great People 10

APCS (Arm Procedure Call Standard) [8/8]

main:

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

bl one

mov r0, #0

b .L2

one:

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

bl zero

bl two

b .L3

two:

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

ldr r0, .L5

bl printf

b .L4

zero:

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

b .L7

lr

pc

fp

ip

sp’

sp

stmfd sp!, {fp, ip, lr, pc}

Great Company Great People 11

Implementation of simple backtrace function [1/2]

� Key concept

� The fp register points to the stack backtrace structure for the currently executing

function

� The return fp value should be zero, or a pointer to a stack backtrace structure created by

the function which called the current function

� The return fp value in this structure is a pointer to the stack backtrace structure for the

function that called the function that called the current function; and so on back until the

first function

� Proto-type

� my_bt_return_address(unsigned short bt_level)

� Function

� This function returns the return address of the current function, or of one of its callers.

The LEVEL argument is number of frames to scan up the call stack.

� A value of `0' yields the return address of the current function, a value of `1' yields the

return address of the caller of the current function, and so forth.

Great Company Great People 12

Implementation of simple backtrace function [2/2]

� Sample source code

void my_bt_retrun_address(unsigned short bt_level)
{

unsigned int *fp, i;

;

printf("Backtrace: fp=%x", (int) fp);

for (i = 0; i < bt_level; i++) {
if ((i % 8) == 0)

printf("\n");

;

printf(" %08x",);

}
printf("\n");

}

Great Company Great People 13

Performance or Debugging ? [Trade Off]

� omit-frame-pointer

� omit-frame-pointer option allows fp register to use as common register for

performanceNot using frame-pointer as debugging register, we can’t get backtrace

information from the system.

� no-omit-frame-pointer

� For debugging

Great Company Great People 14

Conclusion

� Gcc compile provide backtrace structure to programmers

� The fp register points to the stack backtrace structure for the currently executing

function

� The return fp value in this structure is a pointer to the stack backtrace structure

for the function that called the function that called the current function; and so

on back until the first function

� In the case of mips machine, it doesn’t use frame pointer register for debugging.

That’s why mentioned backtrace function unfortunately will be not working.

