

How Linux RT_PREEMPT Works
A common observation about real time systems is
that the cost of the increased determinism of real
time is decreased throughput and increased
average latency. Does this hold true for Linux
PREEMPT_RT_FULL?

This presentation enumerates some of the design
choices and implementation that enable Linux
PREEMPT_RT_FULL real time and the resulting
performance implications.

 Frank Rowand, Sony Network Entertainment October 28, 2011
 111028_0434

 The Question

The cost of the increased determinism of real time

 - Increased average latency

 - Decreased throughput

Is this true for Linux PREEMPT_RT_FULL?

 Some Random Data

Compare the latency of an application on
kernels built with:

 1) CONFIG_PREEMPT_NONE

 2) CONFIG_PREEMPT_RT_FULL

 Some Random Data

Test System:

 - ARM11 MPCore development system

 - 4 cpus

 - 210 Mhz processor clock

 - L1 cache 64 Kbyte per processor

 - L2 cache 1 Mbyte unified

 - Linux 3.0.6-rt17

 Latency (Response Time)

Kernel without RT patchset:

 + smaller average
 + smaller minimum
 - larger maximum

PREEMPT RT enabled:

 - larger average
 - larger minimum
 + smaller maximum
 + more consistent

 Statistics

 Min Avg Max
 ---- ---- ----
PREEMPT_NONE 29 38 9186

PREEMPT_RT_FULL 35 41 95

 Latency (Response Time)

Next graph shows an old kernel, circa 2009

Hardware configuration: unknown

Red Hat Enterprise Linux
Red Hat MRG tuned

 source: Red Hat

Messaging Workload

 The Answer

The cost of the increased determinism of real time

 - Increased average latency

Is this true for Linux PREEMPT_RT_FULL?

 YES

 Some Random Data

Compare the throughput of an application on
kernels built with:

 1) CONFIG_PREEMPT_NONE

 2) CONFIG_PREEMPT_RT_FULL

 Some Random Data

The workload I used for the throughput results

 - is not realistic

 - is not reasonable

 - violates real time application design rules

 - is stupid!

 - but was easy to implement...

 Some Random Data

Test System (same as first test system):

 - ARM11 MPCore development system

 - 4 cpus

 - 210 Mhz processor clock

 - L1 cache 64 Kbyte per processor

 - L2 cache 1 Mbyte unified

 - Linux 3.0.6-rt17

 Test Variables

UP vs SMP

SMP, maxcpus=4 vs SMP maxcpus=1

workload: SCHED_FIFO vs SCHED_NORMAL

1, 2, or 4 instances of the workload

 Permutations of variables results in 10 tests

 The Answer

The cost of the increased determinism of real time

 - Increased average latency

 - Decreased throughput

Is this true for Linux PREEMPT_RT_FULL?

 YES

 Part 2

This presentation enumerates some of the design
choices and implementation that enable Linux
PREEMPT_RT_FULL real time and the resulting
performance implications.

Enabling real-time Linux

 - preemptible kernel

 - locking

 - threaded interrupt handlers

 - threaded softirq

 Non-Preemptible Kernel

When a task invokes a system call, the
system call must complete (or sleep due
to blocking on a resource) before another
task can be scheduled.

Preemption can not occur during the
execution of the system call.

 Non-Preemptible Kernel

Preemption can not occur during the
execution of the system call.

Scheduling may occur on:

 - completion of system call

 - system call sleeping

 Non-Preemptible Kernel

Problems of typical non-preemptible kernel:

 - kernel path lengths non-deterministic

 - longest kernel path has long duration

 - large variance in kernel path length

 Non-Preemptible Kernel

Next slide illustrates non-preemptible kernel.

 syscall external syscall
 event completes

RT
task

Normal
task

syscall

IRQ
handler

 wake RT task
 RT task runs

 Non-Preemptible Kernel

Next slide illustrates non-preemptible kernel.

Adding some complexity:

 - 2 external events occur

 - lock (critical section) during syscall

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1
handler

IRQ 2
handler

 wake RT task
 RT task runs

critical section

 Preemptible Kernel

Mainline 2.6 and 3.0 kernel

CONFIG_PREEMPT_NONE

 No forced kernel preemption

CONFIG_PREEMPT_VOLUNTARY

 Explicit preemption points in kernel

CONFIG_PREEMPT

 All kernel code (not in critical section) preemptible

 Preemptible Kernel

RT_PREEMPT patch renames config option:

 Vanilla 2.6 kernel

 CONFIG_PREEMPT

 RT_PREEMPT 2.6 kernel

 CONFIG_PREEMPT_DESKTOP

 Preemptible Kernel

RT_PREEMPT patch renames config option:

 Vanilla 3.0 kernel

 CONFIG_PREEMPT

 RT_PREEMPT 3.0 kernel

 CONFIG_PREEMPT_LL

 Preemptible Kernel

Mainline 2.6 and 3.0 kernel

CONFIG_PREEMPT “fully preemptible”

 - except when preemption is explicitly disabled

 - except when interrupts are explicitly disabled

 - except when a lock is held
 (“in a critical section”)

 Preemptible Kernel

Next slide illustrates preemptible kernel.

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1
handler

IRQ 2
handler

 wake RT task
 RT task runs

critical section

 Score

- added 0 schedule with context switch

+ shorter wakeup latency

 Preemptible Kernel

RT_PREEMPT 2.6 kernel

CONFIG_PREEMPT_RT

 “fully preemptible”

 - except when preemption is explicitly disabled

 - except when interrupts are explicitly disabled

 - except when a raw spinlock is held

 Preemptible Kernel

RT_PREEMPT 3.0 kernel

CONFIG_PREEMPT_RT_FULL

 “fully preemptible”

 - except when preemption is explicitly disabled

 - except when interrupts are explicitly disabled

 - except when a raw spinlock is held

 Preemptible Kernel

CONFIG_PREEMPT_RT
CONFIG_PREEMPT_RT_FULL

 Most kernel locks are converted to
 preemptible priority inheritance mutex.

 Some kernel locks are converted to
 non-preemptible raw spinlock.

 Preemptible Kernel

Next slide illustrates preemptible kernel
with spinlocks converted to mutexes.

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1
handler

IRQ 2
handler

 wake RT task
 RT task runs

critical section (mutex)

 Score

- added 0 schedule with context switch

+ shorter wakeup latency

 Priority Inheritance Mutex

- May result in more schedule events.

- Avoids priority inversion.

- Reader-Writer lock limited to one concurrent
 reader to minimize PI complexity.

 - Limits scalability of multiple readers.

non-PI Mutex – Priority Inversion
higher number is higher priority

 p = 1
A

 p = 2
B

 p = 3
C

 A gets lock
 B wakes
 C wakes
 C blocks on lock

PI Mutex
higher number is higher priority

 p = 1 p = 3 p = 1
A

 p = 2
B

 p = 3
C

 A gets lock
 B wakes
 C wakes
 C blocks on lock, A boosted to 3
A releases lock, unboosted back to 1, C gets lock

 Threaded Interrupt Handler

 Overview Of
 Interrupt handling algorithm

 - Save context
 - Handle “highest priority” interrupt
 Interrupt handler executes in interrupt mode
 irq_exit() may process softirq or wake softirqd
 - Iterate over active interrupts (arch dependent)
 - Schedule
 - Restore context
 returning either to previous process or
 to newly scheduled process

 Overview Of Threaded
 Interrupt handling algorithm

 - Save context
 - Handle “highest priority” interrupt
 Wake Interrupt handler thread.
 irq_exit() may process softirq or wake softirqd
 - Iterate over active interrupts (arch dependent)
 - Schedule
 - Restore context
 returning either to previous process or
 to newly scheduled process

Interrupt handler thread executes when scheduled.

 Threaded Interrupt Handler

RT_PREEMPT patchset converts almost all
drivers to threaded model. (Timer handler
executes in interrupt context.)

2.6.xx mainline does not convert drivers to
threaded model. Each driver must be
explicitly converted.

 Threaded Interrupt Handler

Priorities must be properly set for:

 - interrupt handler threads

 - softirq threads

 - other kernel threads

 - real time application processes / threads

Do not expect default priorities to be proper.

 Preemptible Kernel

Next slide illustrates preemptible kernel
with interrupt threads.

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1
handler

IRQ 2
handler

 wake RT task
 RT task runs

critical section (mutex)

 Score

- added 2 schedule with context switch

+ shorter wakeup latency

 Other Interrupt Overhead

 Other Interrupt Overhead

CONFIG_PREEMPT_RT and
CONFIG_PREEMPT_RT_FULL changes:

 irq_exit() may process softirq or wake ksoftirqd
 thread

to:

 irq_exit() may wake ksoftirqd thread

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1

IRQ 2

softirq

 syscall external syscall
 events completes

RT
task

Normal
task

syscall

IRQ 1

IRQ 2

softirq

 Score

- added 1 schedule with context switch

+ shorter wakeup latency

 Other Interrupt Overhead

raise_softirq(), (softirq trigger) typically called
from:

 irq context (timer softirq)

 interrupt thread

but can be called from anywhere in the kernel.

Previous slides show trigger from irq context.

 Other Locking Overhead

CONFIG_TREE_PREEMPT_RCU

 Evolving in the early 3.0 RT patches...

 Not analyzed in this presentation.

 Other Locking Overhead

local_lock()

 Uses migrate_disable() instead of
 preempt_disable().

 Evolving in the early 3.0 RT patches...

 Not analyzed in this presentation.

 Real Life

Real systems are much more complicated
than the previous diagrams.

Other scenarios can generate different
performance improvements or penalties.

Recap: Enabling real-time Linux

 - preemptible kernel

 - locking

 - interrupt handlers

 - threaded softirq

 Impact of Real-Time Features

+ Variance of real-time task latency decreased

+ Maximum real-time task latency decreased

- Average real-time task latency may be increased

- Throughput decreased

Recap: The Answer

The cost of the increased determinism of real time

 - Increased average latency

 - Decreased throughput

Is this true for Linux PREEMPT_RT_FULL?

 YES

 Questions?

 How to get a copy of the slides

1) leave a business card with me

2) frank.rowand@am.sony.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

