

On Driver-less Interfacing

with Embedded Devices

Peter Korsgaard <peter@korsgaard.com>

Do More With Less

Peter Korsgaard

NSLU2-Linux

Driver-less

Interfacing?

Interfacing without having to install
any custom SW on PC

Embedded == Custom Stuff

Embedded == Custom Stuff

But Why?

.. Its

.. Its

.. At First

Time Pressure

Flexibility

I'm Special

Does It Need To Be So?

● While these are sometimes valid
concerns, often standard interfaces
can be used instead

● Work done with Fabien Chouteau

Primer

Host

Devices

● Device
● Configuration (mode)

● Interface (functionality)
● Endpoint (pipe)

A device with multiple
interfaces is called a
composite device

Functions can implement
●Specific vendor protocols (custom)
●USB class protocols (standard)

Class protocols most interesting as
OS'es have built in drivers

●HID (keyboard/mouse/..)
●Storage (Hard drivers, USB sticks)
●Audio (headsets, speakers)
●Video (webcams)
● ..

USB Peripheral Controller Driver

USB Function Driver USB Function Driver

Composite

User Space Other Kernel Subsystems

Linux USB Gadget Stack

Examples

Function Keys

Display with function keys used to control PC

Issues

Historically interfaced to PC using custom
serial protocol

● Custom PC SW needed
● Support issues
● Not usable during BIOS/BOOT
● New PCs lack serial

Solution

Emulate USB HID keyboard

Human Interface Devices Class

● HID descriptors to specify device type
 and supported report (message) formats
● Reports to device to set properties (E.G
 LEDs on keyboard)

● On control endpoint
● Reports from device to report changes
 (E.G. key presses / releases)

● On interrupt endpoint

HID Keyboard (Boot) Protocol

● 1 byte reports to device
● Bitmask of LED states (numlock,
capslock, ..)

● 8 byte reports from device
● Modifier key mask (alt, ctrl, ..)
and currently pressed keys

See HID usage tables for key code definitions

Implementation

● HID gadget function driver
● Mainline since 2.6.35
● Split kernel / user space implementation

● HID descriptor handling in kernel,
● /dev/hidgX character device to get/set HID
reports

● See Documentation/usb/gadget_hid.txt for
details

Kernel Side

● Platform device in platform code defining
 HID device descriptor(s)

● Can emulate as many devices as controller
has endpoints

● g_hid USB gadget driver

static struct hidg_func_descriptor hid_data = {
.subclass = 0, /* No subclass */
.protocol = 1, /* Keyboard */
.report_length = 8,
.report_desc_length = 63,
.report_desc = {

0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
0x09, 0x06, /* USAGE (Keyboard) */
0xa1, 0x01, /* COLLECTION (Application) */

 ...
}

};

static struct platform_device hid = {
.name = "hidg",
.id = 0,
.num_resources = 0,
.resource = 0,
.dev.platform_data = &hid_data,

};

platform_device_register(&hid);

Kernel Side

User Space Side

Read/write to /dev/hidgX

E.G. To send 'a':
 echo -en '\0\0\4\0\0\0\0\0' >/dev/hidg0
 echo -en '\0\0\0\0\0\0\0\0' >/dev/hidg0

User Space Side

DemoDemo

Similar Setups

Yubico UbiKey one-time
password generator

ThinkGeek Phantom
Keystroker

Potential Pitfalls

Key codes in HID reports are scancodes
Corresponding key depends on PC
keyboard layout

Example 2

Data Transfers

Firmware Upgrades through USB

Issues

Historically using custom serial protocol
● Custom PC SW needed
● Support issues
● New PCs lack serial

Solution

Emulate USB memory stick

Alternatively access USB stick if host port available

Pitfalls

● Mass Storage == Block device
● Filesystems / OSes don't support
concurrent access

● Need to detect when it is safe to
access device

Use Case

● Provide virtual drive where firmware
 upgrade can be copied to
● Perform upgrade when unplugged

Use Case

● Provide virtual drive where firmware
 upgrade can be copied to
● Perform upgrade when unplugged

Use Case

● Provide virtual drive where firmware
 upgrade can be copied to
● Perform upgrade when unplugged

Implementation

● File storage gadget function driver in kernel
● Userspace notification on unplug / eject
● Mainline since 2.6.35
● Sysfs attributes:

● /sys/<gadget>/suspended
● /sys/<gadget>/lunX/file

Implementation

● User space program that on unplug / eject:
● Ejects file
● Loopback mounts filesystem
● Inspects it for interesting files
● Recreates file system
● Adds file to file storage driver

Implementation

● File system could simply be a
 pregenerated template

● Prepopulated with any needed
help/documentation files

● Stored on local storage or RAM (tmpfs)
● If tmpfs, sparse file interesting
● FAT table / help file << filesystem size

Demo
● Check for image files
● Show on framebuffer

Similar Setups

● Same approach could be used to
transfer data from device

● Several 3G modems have Windows
drivers on emulated USB drive

Alternatives

● Device Firmware Upgrade (DFU)
● Picture Transfer Protocol (PTP)

● Gadgetfs implementation: http://git.denx.de/?p=ptp-gadget.git
● Media Transfer Protocol (MTP)

● MeeGo implementation: http://wiki.meego.com/Buteo/MTP

● None are as generic or well supported

http://git.denx.de/?p=ptp-gadget.git
http://wiki.meego.com/Buteo/MTP

Web Interfaces

● Good Alternative to custom PC GUI Software

● Many open source libraries exists
● JQuery UI (GUI Widgets)
● Flot (Graphs)
● ..

● Modern AJAX is nice for embedded
● Heavy processing on client side

Conclusion

● USB Class protocols can be (ab)used
for driver-less interfacing

● Easiest PC SW support is NO SW
● Easy to integrate, in mainline
● Extends to lots of other areas

Thanks!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

