
1

Power Fail Safe FAT File System

Keshava Munegowda
Texas Instruments (India) Pvt Ltd
Bangalore

The FAT 12/16/32 file systems
• Logging mechanism
• Recovery
• FAT Specification compatibility

Embedded Linux Conference
April 11- 13, 2011

San Francisco , CA Linux Development Center

2

Agenda

Ø FAT file system
Ø Need of Power fail safe FAT
Ø State of Art
Ø TFAT
Ø KFAT, RFS and TFS4
Ø TI-LFAT: TI Log based Power fail safe FAT
Ø Directory entry Logging
Ø FAT entry Logging
Ø Log Record
Ø File system operations with Logging and Committing
Ø References

Linux Development Center

TI-LFAT

3

FAT File system

BPB

FAT1

FAT2

Data clusters

BPB - BIOS Parameter Block
– BIOS : Basic Input-Output System

– Also Called as “Boot Sector”

– Specifies
• Number of sectors in the storage partition/disk/device

• Number of FATs (File Allocation Table)

• Sectors per cluster

FAT1 – File Allocation Table
- Linear linking (chain) of data clusters of the file/directory

FAT2 – Backup of FAT1

Data clusters
- Group of physical/logical sectors/blocks

- Contains directories or Files data

Linux Development Center

TI-LFAT

cluster3 cluster7 EOF

FILE.TXT

Clusters chain / Linked list of
clusters

4

Need of Power fail safe FAT

l FAT File system is not power fail safe.
l This means during file or directory update if there

is uncontrolled power loss, then it can causes
incorrect file system update.

l Files are data of the directories; Typically the
File/directory information such as file/directory
name, extension, attribute, size, and starting data
cluster number are stored in the form of 32 Byte
Directory Entries.

l Meta Data of the file/directory means
– FAT entries specify the cluster chain of the

file/directory
– 32 Byte Directory Entry

l Incorrect Update of File system Meta data
corrupts the organization of files/directories and
hence creates garbage data.

l File system format is typical solution to re use the
storage device; but it is not recovery.

l In FAT, the update of FAT entries and directory
entries should be logged or should be atomic
operation.

cluster3

cluster7

cluster18

EOF

FILE.TXT

Uncontrolled
Power loss

cluster9

cluster16

EOF

DIR1

FILE2.TXT

……………

……………

……………
32 byte Directory

Entries

Contents of
Cluster 9

Linux Development Center

TI-LFAT

5

State of Art

l TFAT
– Transaction-safe FAT File system, Microsoft.

l KFAT
- Log based Transactional FAT file system for embedded

mobile systems, Samsung.
l RFS

– Robust FAT File system, Samsung
l TFS4

– Transactional File system 4 for oneNAND flash memory,
Samsung

Linux Development Center

TI-LFAT

6

TFAT

l Developed by Microsoft; Available in Windows
Embedded CE 6.0.

l Typically FAT2 is set as active working FAT.
l All FAT entries are first updated in FAT2 and then

entire FAT2 is copied to FAT1 during commit.
l File/directory update is performed by allocating new

data cluster and then write updated data instead of
updating existing data cluster. This causes additional
writes to FAT entries.

l The Root directory updates of FAT12 and FAT16 are
not transactions safe. This is because Root directory
in these file systems exists in a fixed location.

l Performance is lower

Data of Cluster 9 = Updated
data of cluster 7

cluster3 cluster7 cluster18

EOF

FILE.TXT

cluster3 cluster9 cluster18

EOF

FILE.TXT

BPB
FAT1

FAT2

Data
clusters

Entire FAT2
is copied to
FAT1 during

commit

Linux Development Center

TI-LFAT

7

KFAT, RFS and TFS4

l Log based Transactional FAT file system for embedded
mobile systems by M.S. Kwon, S.H. Bae, S.S. Jung,
D.Y. Seo, and C.K. Kim, in Proceedings of 2005 US-
Korea Conference, ICTS-142,2005

l All file system updates such as FAT entry updates and
32 byte directory/file are logged.

l During commit operation, the logged entries are
processed and finally FAT1, FAT2 and directory entries
are updated.

l Typically, The log file is the first file in the root directory.
l The Log file size is fixed
l Contains 13 different Log types
l But, definitions of all log types are not known.
l RFS and TFS4 are based on KFAT.
l TFS4 is specific to Samsung’s oneNAND flash memory.

BPB

FAT1

FAT2

Data clusters

Log file

FAT Entry of cluster of log file

FAT Entry of cluster of log file

Structure of a Log file

Linux Development Center

TI-LFAT

8

TI-LFAT : TI Log based power fail safe
FAT file system

l Defines
– FAT Entries Logging

l Similar to TFAT; But Entire FAT2 is not completely copied to
FAT1. Only Updated FAT2 entries are copied to FAT1.

– Directory Entries Logging
l Similar to KFAT; But, FAT entries Updates are not logged in to

Log file, only 32 Byte Directory entries updates are logged.
l Logging

– Log file and FAT2 Update
l Commit

– FAT1 and Data clusters Update
l Objectives of TI-LFAT:

– Secure the FAT entries and 32 Byte Directory Entry
Updates

– Minimize the Reduction of performance
– Maintain the FAT specification Compatibility

l first updating the FAT2 entries and then copying updated
entries to FAT1 does not break the compatibility.

l Log file create/update is generic file update and does not break
the compatibility.

l Windows PC shows log file as a file existing in root directory
without any errors.

BPB

FAT1

FAT2

Data clusters

Logging

Committing

Log File

Linux Development Center

TI-LFAT

9

TI-LFAT : TI Log based power fail safe
FAT file system

l Defines “Log Records” for Directory Entry Logging.
l Log records contains the Updated information of the

FAT 32 Byte directory Entries
l The FAT entries are always updated along with 32 byte

directory entry update
l This TI-LFAT defines Log Table.
l The Log table serves the same purpose of Log file and it

is secure from accidental user updates.
l The Implementation can choose either log file or log

table.
l The 32 byte directory entry updates are always first

appended to log file or log table and then updated in the
file system.

l The FAT entries are first updated in FAT2 and then only
updated entries are copied to FAT1.

l This TI-LFAT combines FAT entries update techniques
described TFAT, but not the complete FAT copy
mechanism, and usage of log file is as described in
KFAT with improved performance by not logging FAT
entries Updates and reduced the logging space.

BPB

FAT1

FAT2

Data clusters

Log file

FAT Entry of cluster
of log file

FAT Entry of cluster
of log file

Structure of Log file

Only Updated
FAT2 Entries
are copied to

FAT1

Log record 1

Log record 2

….

…..

Contents of log file/
Log Table

Linux Development Center

TI-LFAT

10

Directory entry Logging

l Log file/Table is contains the log records
l The log records specifies file system operation
l The log records can be placed in

– The log file
– The log table in reserved clusters
– The log table in reserved sectors

l Log file is a fixed size file in the Root Directory.
l Log records can be placed in a set of reserved sectors.
l The reserved sectors are always exists in between BPB and

FAT1.
l Typically the number of reserved sectors are configured during

file system format.
l The file system does not allocate the reserved sectors to any

file/directory to store the data of file/directory.
l The log table placed in reserved sectors does not break the FAT

file system specification compatibility. This means , The Windows
PC or Linux PC doest not access (read/write) these reserved
sectors and does not shows any errors about the existence of the
reserved sectors.

l These reserved sectors are invisible to user and file system
applications. This means, these clusters are not part of any file
and directory and hence user/file system applications can not
access data of these clusters.

BPB

FAT1

FAT2

Data clusters

Log Table
[Reserved sectors]

Linux Development Center

TI-LFAT

11

Directory entry Logging cont…

l The log table can be placed in reserved clusters.
l The Reserved clusters are created by writing the 28 bit value

0x0FFFFFF6 to required FAT entries for FAT32 file system.
l The 16bit value 0xFFF6 is written to required FAT entries in

case of FAT16 file system to create reserved clusters.
l The 12 bit value 0xFF6 is written to required FAT entries in

case of FAT16 file system to create reserved clusters.
l The file system does not allocate the reserved sectors to any

file/directory to store the data of file/directory.
l The log table placed in reserved clusters does not break the

FAT file system compatibility. This means, The Windows PC
or Linux PC or any other FAT implementation adhering to
FAT specification standard doest not access (read/write)
these reserved clusters and does not shows any errors about
the existence of the reserved clusters.

l The log file is visible to user as file in root directory where as
log table in reserved clusters is invisible to user and file
system applications. This means, these clusters are not part
of any file and directory and hence user/file system
applications can not access data of these clusters.

l The Advantage of having reserved clusters as Log Table is,
the allocated reserved clusters can be re used for data
storage whenever reserved clusters are not required; But in
case of reserved sectors, this is not possible and only by file
system format operation number of reserved sectors can be
reduced.

BPB

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

………
………

Entry N

Cluster 2

Cluster 3

Cluster 4

Cluster 5

………
………

Cluster N

File
Allocation

Table
(FAT 1)

Data
clusters

Log
Table

Reserved
Clusters

TI-LFAT

Linux Development Center

12

FAT entry Logging

l The FAT entries are first updated in FAT2
and then during committing log records of the
log table/file, only the updated entries are
copied to FAT1.

l FAT1 is always the good FAT. Where are
FAT2 is always the Dirty FAT.

l TFAT typically copies entire FAT2 to FAT1,
where as in this TI-LFAT File system

– While processing the log records of the log table/file,
the starting FAT cluster entries are identified.

– The FAT entries chain from starting FAT cluster entries
are traversed in FAT2 and same entries are modified in
FAT1.

– In the example,
l The cluster 19 and cluster 20 are appended to file

FILE.TXT; First the log record is created for the file update
and then the fat entries are updated in FAT1.

l After the log record created and file data written to clusters
19 and 20; the log record is committed to file system by
updating the directory entry of the FILE.TXT and copying
the updated cluster entries numbered 19 and 20 to FAT1.

Appending the file; Creating log record

Committing the log record

cluster3 cluster7 cluster18 EOF

FILE.TXT

cluster3 cluster7 cluster18

EOF

FILE.TXT

cluster19

FAT2
cluster20

cluster3 cluster7 cluster18

EOF

FILE.TXT

cluster19

FAT1
cluster20

Linux Development Center

TI-LFAT

13

Log Record

l Log record is similar to FAT 32 Byte
directory entry.

l A Single file system operation is
specified by the single or multiple Log
records.

l Each of the following operations
requires single log record to specify

– Creation with SFN (Short File Name)
– Deletion
– Update
– Truncation

l Each of the following operations
requires Two log record to specify

– Creation with LFN (Long File Name)
– Rename

Log record

Log record

Log record
………
.……..
……...

Log record

Single
operation by
only one log

record

Single
operation by
multiple log

records

Contents of Log File/Log Table

Linux Development Center

TI-LFAT

14

Log Record Structure

file size in bytes.428DIR_FileSize

Low word of this
entry’s first cluster
number.

226DIR_FstClusLO

Date of last write. 224DIR_WrtDate

Time of last write. 222DIR_WrtTime

High word of this
entry’s first cluster
number

220DIR_FstClusHI

Last access date. 218DIR_LstAccDate

Date file was
created.

216DIR_CrtDate

Time file was
created.

214DIR_CrtTime

Millisecond stamp
at file creation time

113DIR_CrtTimeTenth

Reserved112DIR_NTRes

File attributes:111DIR_Attr

Short name.110DIR_Name

DescriptionSize
(bytes)

Offset
(byte)Name

FAT 32 byte Directory Entry Structure

Low word of this entry’s first cluster number.

High word of this entry’s first cluster number

file size in bytes.428DIR_FileSize

If DIR_log is Update (0x03) then this value indicates low
word of last cluster before update

226DIR_FstClusLO/
DIR_LstClusLO

If DI_log is Delete (0x03) or Rename (0x5) then DIR_cluster
is the cluster prior to DIR_DCluster; the index at this
cluster value in FAT contains DIR_DCluster
If DIR_log is Update (0x03) then DIR_Cluster is starting
cluster in the FAT entry from which the cluster chain
needs to be copied from FAT2 to FAT1.
If DIR_log is truncate (0x04) then DIR_cluster is starting
cluster from which the cluster chain deletion should start

422DIR_Cluster

If DIR_log is Update (0x03) then this value indicates high
word of last cluster before update

220DIR_FstClusHI /
DIR_LstClusHI

Index in the DIR_Dcluster;This index points to 32 byte
directory entry

218DIR_Index

Directory cluster; Cluster in which this 32 byte directory
entry exist.

414DIR_DCluster

Logging operation; 0x01 – Create; 0x02 – Update; 0x03 –
Delete; 0x04 - Truncate; 0x05 –Rename; 0x00 – DIR_log
operation of previous Log record.

113DIR_Log

Long File names Entries Count112DIR_LFNCount

File attributes111DIR_Attr

Short name.110DIR_Name

DescriptionSize
(bytes)

Offset
(bytes)Name

Log Record Structure

Linux Development Center

TI-LFAT

15

Log Record with LFN

l Typically the log record with file/directory creation or rename operation includes
additional log records with Long File Names (LFN).

l Each additional log record can contain a maximum of 16 Unicode characters of
LFN.

l The checksum is calculated while committing the log record to file system.
l After the Log record Committed to file system, The first byte of DIR_name field of

set as 0xE5 Indicating that log record is committed.
l Indicating the log record as committed by writing 0xE5 as first byte of DIR_name

is same as marking the FAT 32 byte deleted during file/directory deletion.

DIR_name DIR_attr DIR_LFNCount = 9 DIR_Log = 1 ……….

32 Bytes

1st 32 bytes of Unicode Long File name characters (16 Unicode characters)

2nd 32 bytes of Unicode Long File name characters (16 Unicode characters)
………..

………..

9th (Last) 32 bytes or less than 32 bytes of Unicode Long File name characters

Linux Development Center

TI-LFAT

16

Logging and Committing

l Logging is performed during execution of
following file system operations

– File/Directory Create,
– File/Directory Delete,
– File/Directory Rename
– File Truncate

l Committing is also done in above operations
l In case of File write operation only the FAT2 is

updated.
l Incase of file close (file write is invoked before)

logging and commit operations are performed.
l The File/Directory read, file open in read only,

getting file system statistics operations need
not be logged, because these operations does
not update/change the file system meta data.

l If Uncontrolled Power loss happens during
“Logging”, then there is no file system Update.

l If Uncontrolled power loss happens after
logging, then commit is performed in the
immediate reboot.

File system API

Log record

Log record

Log file

FAT2
FAT2 Updates

FAT Entries search in FAT2

Data clusters Write/
file data write

FAT entries Update

Append Log record to
Log file

Data cluster

Data cluster

……

Read the Log record

FAT1
FAT1 Updates

Update the Data
clusters

Update FAT1

Mark the Log record
as committed

Logging

Committing

Data clusters

Linux Development Center

TI-LFAT

17

File/Directory Create

l Logging
– In case of Directory Create, “.” and “..” entries are created in a free cluster and

same is marked as allocated in FAT2
– The Log Record with DIR_log= Create , is appended to Log file/Table.
– In case of LFN , multiple Log records are appended to Log file

l Commit
– In case of Directory create, Cluster allocated in FAT2 are copied to FAT1
– All LFN log records are written to file system as FAT 32 byte directory entries
– The SFN is calculated and final SFN 32 byte directory entry created
– The LFN log records are marked as committed
– The Log record with DIR_log=1 is marked as committed.

l For SFN (Short File Name) Entries, the FAT file system uses
following values in DIR_NTRes

– 0x08 – All 8 characters of name of DOS8.3 name are lower case letters
– 0x10 – All 3 characters of extension of DOS8.3 name are lower case letters
– 0x18 – All 8 characters of name and extension of DOS 8.3 are lower case

letters.

l During commit operations, the value of field DIR_NTRes is
calculated and also the date and time is written to 32 byte
directory entry.

l While creating a file/directory, there could be addition of new
cluster to parent directory; then a new cluster is allocated in
FAT2 and log record with DIR_log = Update, should be included
to log file and same should be committed before the
file/directory create log record creation and commit.

Linux Development Center

TI-LFAT

Directory Create

Data cluster
allocation

FAT2 Update

Append Log record to log file

Log record commit

File Create

Get the parent directory cluster

Parent
directory

require a new
cluster ?

Is
Directory
creation

?

Create and commit
the new log record
for parent
“Directory Update”

Yes

No

Yes

No

Free cluster search
in FAT2

18

Directory Update

l Might require while creating a new file or
directory.

l While creating new file/directory, if there
is required number of 32 byte directory
entries are NOT free in parent directory (
directory in which file/directory needs to
be created) then “Directory Update”
needs to be done.

l Directory update means appending the
new cluster to linked list of the data
clusters of a directory.

l Logging and Committing of Directory
Update should happen before the
Logging of new file/directory creation.

Directory
Update

Data cluster
allocation

FAT2 Update

Append Log record
to log file

Log record commit

Free cluster search
in FAT2

Directory Create File Create

Get the parent directory cluster

Parent
directory

require a new
cluster ?

Yes

END

No

Linux Development Center

TI-LFAT

19

File/Directory Delete

l The Log record with DIR_log = Delete is included to the log file.
l Along with the log record to ensure the safe file delete following

algorithm is required
– Get the first cluster of the data cluster chain of file/directory to be

deleted, by reading FAT 32 byte directory entry.
– Traverse the cluster chain completely and collect all clusters
– Free the cluster entries in FAT from last cluster to first cluster;

instead of from first to last cluster
– Once all clusters are freed in FAT ; then mark the log record as

committed.
l This mechanism ensures that if the power fail occurs while freeing

the cluster chain; then in next reboot read the same uncommitted
log record and execute the same algorithm.

l This algorithm prevents occurrence of orphan FAT entries in case
uncontrolled power loss occurred during file/directory delete

l In this example, the cluster freeing in FAT is done from 27 to 3 in
the reverse order; instead of freeing from cluster 3 to 27.

cluster3

cluster7

cluster18

EOF

FILE.TXT

cluster 9

cluster27

Linux Development Center

TI-LFAT

20

File Truncate

l The Log record with DIR_log = Truncate is
included to the log file.

l The DIR_Cluster is the starting cluster to
truncate.

l Starting from DIR_Cluster, the file/directory
deletion algorithm is followed to delete the FAT
entries.

l DIR_cluster is made as the last cluster of the
cluster chain.

l In the example, the DIR_cluster is 9 and starting
from this cluster the file/directory deletion
algorithm is applied to delete the FAT entries.

l A new file size is updated while committing the
log record.

cluster3

cluster7

cluster18

EOF

FILE.TXT

cluster 9

cluster27

Linux Development Center

TI-LFAT

21

File Write and Close

l During file write, only FAT entries are
created. This means the newly
allocated clusters chain created in
FAT2.

l While allocating new clusters,
searching for new free cluster always
performed in FAT2.

l While closing file, Log record is created
with DIR_cluster indicating the starting
cluste of new cluster chain; The
DIR_LstClusHI/ DIR_FstClusHI and
DIR_LstClusLO/ DIR_FstClusLO
indicating the last cluster of the file
before update.

l While committing the log record,
– The cluster chain starting with

DIR_cluster is copied to FAT1,
– and same cluster chain is linked to

existing cluster chain whose last cluster
is specified fields DIR_LstClusHI/
DIR_FstClusHI and DIR_LstClusLO/
DIR_FstClusLO of log record.

Linux Development Center

TI-LFAT

File write

Free Clusters
search in FAT2

Data clusters
allocation

File Close

Log record

Log record

Log file

FAT2
FAT entries

Update

Log record
creation and

append to Log file

Log record
Commit

First cluster of
the new data
cluster chain

Traverse the
existing cluster
chain and get
the last cluster

FAT Entry
Logging

Directory Entry
Logging

22

File/Directory Rename

l At least two log records are created.
l The first log record will have DIR_log =

Rename and the second log record will
have DIR_log = 0 indicating the same
rename operation.

l The second log record is dependent on
first log record.

l If LFN exists in a new file/directory,
then second log record contain the
additional LFN log records.

l if file/directory is moving (renaming) to
different folder/directory, then
DIR_Dcluster of first log record is
cluster of the source directory and
DIR_Dcluster of second log record is
the cluster of the destination directory.

• 1st Log Entry is to delete

• 2nd Log entry is to create

• LFNs exists from 3rd log
entries.

source … DIR_Log = Rename ……

32 Bytes

LFN

………..

………..

Destination … DIR_Log = 0 ……

Log records

Linux Development Center

TI-LFAT

23

References

l FAT Specification: http://msdn.microsoft.com/en-us/windows/hardware/gg463080
l TFAT: http://msdn.microsoft.com/en-us/library/aa915463.aspx
l TFAT patent number 7174420 : http://patft.uspto.gov/netacgi/nph-

Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.ht
m&r=1&f=G&l=50&s1=7174420.PN.&OS=PN/7174420&RS=PN/7174420

l KFAT : http://www.ksea-ci.org/UKC2005/UKC2005.htm
l RFS :

http://www.samsung.com/global/business/semiconductor/products/fusionmemory/P
roducts_FAQs_RFS.html

l RFS power off recovery:
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/d
ownloads/RFS_POR_10.pdf

l TFS 4 :
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/P
roducts_TFS4_ApplicationNotes.html

l TFS 4 power off recovery:
http://www.samsung.com/global/business/semiconductor/products/fusionmemory/d
ownloads/tfs4_v16_power_off_recovery_rev10.pdf

Linux Development Center

TI-LFAT

24

Questions

Queries and Feedback
– keshava_mgowda@ti.com
– keshava.gowda@gmail.com

Linux Development Center

TI-LFAT

