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System Device Tree & Heterogeneous computing

Heterogeneous System with multiple HW components
- A72s,R5s,PMC, MicroBlaze clusters

Multiple Execution Domains with its own address map
- Each domain with its own operating system

«  Multiple execution levels (EL)

« Multiple Security Environments

- E.g.:U-Boot, TF-A, Xen, Linux, OPTEE, Zephyr, baremetal

The system is divided into domains

- Each domainis an independent operating environment with
CPUs, memory, and devices allocated to it

System Device Tree: extending DT to describe the full system

Including multiple heterogeneous CPU clusters
Including multiple domains
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System Device Tree

- Device Tree expresses HW information relevant to an operating environment
- Used by U-Boot, Linux, Xen, TF-A and others

- System Device Tree is an extension to Device Tree to describe the full system

- It describes multiple CPU clusters with different address maps
- Both A72s and R5s

- It describes multiple domains and the resources allocated to each

« Adomain could be:
< an heterogenous computing unit, e.g. Zephyr on R5s
< an operating environment at a specific execution level, e.g. OPTEE
- a virtual machine, e.g. a Xen domain
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Lopper: an introduction

- Lopper
- Is a framework for manipulating System Device Trees and transforming information

- Original goal / concept was to produce standard devices trees to support existing platforms/OSs
Produces any number of outputs: device trees, generated code, custom, etc

+ Flexible development / runtime workflow integration
- Data driven

- Afew details:

- OpenSource, BSD-3 License
https:/lgithub.com/devicetree-org/lopper, https://pypi.org/project/lopper/
Written in python, using pluggable backends (libfdt,dtlib) for device tree manipulations
Additional logic components in the future

- Works with dts, dtb and yaml inputs

< Supports unit operations (lops) and more complex python assist modules
- Depending on the task, bothcan be used

+ Flexible output / input is provided via python assists

- Performs validation and consistency checking
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Lopper: a framework

Common base for tooling inquiring or manipulating device trees
Built-in:

Core tree manipulation, merging

Input and output: dts/ dtb / yaml

Parsing: libfdt or dtlib

Assist / lop management

Device tree sanity and consistency checking

Tree manipulation library / routines
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Lopper: a framework

- Optional / plugin:
- Assists provide Logic / semantics / context awareness

Front ends
* domains / protection, yaml expansion

Backends / Assists
* System Device tree pruning
°* RTOS/Bare Metal backend creates #defines into #include files (early availability)
°  OpenAMP plugin that generates device specific DT for shared pages/IRQs
* Security / partitioning backend for subsystem and firewall information (TBD)
* Default Domain specification plugin creates a YAML file that can later be edited (under development)
* Verification assist that compares DTs from different domains to make sure they are compatible (TBD)
* Sub device tree / overlay extraction

Detailed tree analysis / modification
Source validation and expansion
ReST API: an HTTP server to support GUIs and other tooling
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Lopper: components

inputs Lopper

outputs
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* bindings
* schemas
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Xen Partial Device Trees

Similar to device tree overlays but older

Everything under the top-level passthrough
node is copied to the guest device tree

Xen reads partial device trees today to:

- configure guest device assignment
- describe passthrough hardware to the guest

Starting from a copy of the host device tree
node and editing it

- Removing unwanted properties

- Adding Xen specific properties

passthrough {

}s

compatible
ranges;
f#faddress-ce
#size-cells

= "simple-bus";

11s = <0x2>;
= <OXx2>;

timer@ff110000 {

}s

compatible = "cdns,ttc";

status = "okay";

interrupt-parent = <0xfde8>;

interrupts = <0x0 0x24 Ox4 Ox0 Ox25 Ox4 Ox0 Ox26 Ox4>;
reg = <0x0 Oxff110000 0x0 0x1000>;

timer-width = <0x20>;

xen,force-assign-without-iommu = <1>;

xen,reg = <0x0 Oxff110000 O0x0 0x1000 Ox0 Oxff110000>;
xen,path = "/axi/timer@ff110000";
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Xen Partial Device Trees

- Xen specific properties and quirks:

Xxen,reg to specify memory mappings

xen,path points to the corresponding host device tree node (used for IOMMU configurations)
xen,force-assign-without-iommu when IOMMU configuration is not necessary
interrupt-parents = <Oxfde8> to point to the virtual interrupt controller of the guest

no iommus, because the IOMMU is used by Xen and not exposed to the guest
xen,passthrough; in the corresponding host device tree node to mark it for assignment

timer@ff110000 {
compatible = "cdns,ttc";
status = "okay";
interrupt-parent = <@xfde8>;
interrupts = <Ox0 0x24 Ox4 Ox0 Ox25 Ox4 Ox0 Ox26 Ox4>;
reg = <0x0 Oxff110000 0x0 0x1000>;
timer-width = <0x20>;
xen, force-assign-without-iommu = <1>;
xen,reg = <0x0 Oxff110000 Ox0 Ox1000 Ox0 Oxff110000>;
xen,path = "/axi/timer@ff110000";

}s
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Xen Partial Device Trees: the problems

- Xen specific changes are not simple, but they could be automated more easily

- Xen properties aside, how to generate the partial device tree?
« Which properties to remove compared to the host device tree node?
How to solve clock dependencies? Do we need to include the clock controller too?
- What about power domains and reset lines?

- Generic problem: affects device assignment on any hypervisor and heterogeneous domains too
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Xen Partial Device Trees: a more complex example

zyngmp-firmware { video clk {
compatible = "xlnx,zyngmp-firmware", "xlnx,zyngmp"; compatible = "fixed-clock";
#ticlock-cells = <Ox0>;
method = "smc";

clock-frequency = <0x1fc9f08>;

#power-domain-cells = <Ox1>; phandle = <0x7>;

phandle = <0x1>; };
pss_alt ref clk {

clock-controller { compatible = "fixed-clock";

#clock-cells = <Ox0>;

clock-frequency = <0x0>;

#clock-cells = <Ox1>; phandle = <0x8>;

}s

u-boot,dm-pre-reloc;

compatible = "xlnx,zyngmp-clk";

clocks = <Ox6 Ox7 Ox8 Ox9 Oxa>;

clock-names = "pss_ref_clk", "video_clk", [..]
"pss_alt_ref_clk”, mmc@F£170000 {
"aux_ref_clk", "gt crx_ref_clk"; compatible = "xlnx,zyngmp-8.9a", "arasan,sdhci-8.9a";
status = "okay";
phandle = <Ox3>; interrupt-parent = <@xfde8>;
}s interrupts = <0x0 0x31 0x4>;

reg = <0x0 Oxff170000 0x0 0x1000>;

i xlnx,device_id = <0Ox1>;
clock-names = "clk_xin", "clk_ahb";
pss_ref_clk { #clock-cells = <0x1>;
. . clock-output-names = "clk out sdi1", "clk in sdl";
compatible = "fixed-clock"; clocks = <0x3 ©x37 0Ox3 Ox1f>;
#clock-cells = <Ox0>; phandle = <0x37>;

Xen,reg = <Ox0 Oxff170000 0x0 0x1000 0x0 Oxff170000>;
clock-frequency = <0x1fc9350>; xen,pa%h = "/axi/mmc@ff170000"; ’

J - J
phandle = <0@x6>; };

}s AMDZ1
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The Solution with Lopper

- Leverage core Lopper functionality + assists
Read the device tree -> LopperTree
- Analyze the devices
Manipulate the tree
Output dts/dtbs for passthrough devices
- Trigger image generation (optional)

- Requirements:

No hardcoded Xen knowledge
- Inputs + devicetree properties as triggers

Split functionality into generic / resuable components
Use Lopper Library routines where possible
Data driven + command line options for flexibility

- Works for any device that can be passed through
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Implementation

- A pipeline of assists to extract device tree nodes and their dependencies
- extract: Generates a partial / extracted device tree starting from a target node
« extract-xen: Converts generic extracted tree to a Xen understood format
- Imagebuilder: Takes extracted dtbs and generates boot artifacts
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Implementation: Assists

(regex)

Usage: extract-xen -t <target node> [OPTION]
-t target node (full path)
Usage: extract -t <target node> [OPTION] -p permissive matching on target node
-t target node (full path) -v enable verbose debug/processing
-1 include node if found in extracted node paths -0 output file for extracted device tree
-p permissive matching on target node (regex)
-v enable verbose debug/processing
-x exclude nodes or properties matching regex
-0 output file for extracted device tree
Usage: image-builder [--uboot] -o <output dir> --imagebuilder <path to imagebuilder>

wrapper around imagebuilder (https://gitlab.com/xen-project/imagebuilder)

and the supplied output directory

--uboot execute imagebuilder’s “uboot-script-gen”,
options: -t tftp -c¢ ./config,

-1 path to imagebuilder clone

-v enable verbose debug/processing

-0 output directory for files

with the
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Lopper and Yocto
- Recipe is part of the meta-virtualization layer

- Current use cases:
- Configuration generation from device tree

- Modification of gemu device trees for Xen boot support
- See: gemuboot-xen-dtb.bbclass

- Future:
- Map devices to kernel configuration
- Boot artifacts generation
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Future Work

Runtime dynamic device tree extraction -> overlay
- Containers
Partitioning

Validation and smart comparisions

Common library / routines:
- Code / driver generation
Device analysis and export

Replace scripts / custom tools and solutions

Generic image configuration and generation wrapper
Improved schema integration

Extend Yocto Project integration
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Questions?
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