Lopper

Bruce Ashfield & Stefano Stabellini
ELC NA 2022

AMDZ

System Device Tree & Heterogeneous computing

Heterogeneous System with multiple HW components
- A72s,R5s,PMC, MicroBlaze clusters

Multiple Execution Domains with its own address map
- Each domain with its own operating system

« Multiple execution levels (EL)

« Multiple Security Environments

- E.g.:U-Boot, TF-A, Xen, Linux, OPTEE, Zephyr, baremetal

The system is divided into domains

- Each domainis an independent operating environment with
CPUs, memory, and devices allocated to it

System Device Tree: extending DT to describe the full system

Including multiple heterogeneous CPU clusters
Including multiple domains

ELO

EL1
EL2

EL3

RPU

FPGA

App App App App App App
RTOS Bare Metal RTOS Bare Metal
F
R5 Core 0 R5 Core 1 MicroBlaze MicroBlaze
Non-secure State Secure State
App App App App App App App
Container
App .
Linux Trusted Execution
RTOS Environment (TEE)
Hypervisor

Trusted Firmware (TF)

A72
Core 0

-

A72

Corel

PLM

Platform ManagementController (PMC)

Memory
Devices

AMDZ

System Device Tree

- Device Tree expresses HW information relevant to an operating environment
- Used by U-Boot, Linux, Xen, TF-A and others

- System Device Tree is an extension to Device Tree to describe the full system

- It describes multiple CPU clusters with different address maps
- Both A72s and R5s

- It describes multiple domains and the resources allocated to each

« Adomain could be:
< an heterogenous computing unit, e.g. Zephyr on R5s
< an operating environment at a specific execution level, e.g. OPTEE
- a virtual machine, e.g. a Xen domain

AMDZ

Lopper: an introduction

- Lopper
- Is a framework for manipulating System Device Trees and transforming information

- Original goal / concept was to produce standard devices trees to support existing platforms/OSs
Produces any number of outputs: device trees, generated code, custom, etc

+ Flexible development / runtime workflow integration
- Data driven

- Afew details:

- OpenSource, BSD-3 License
https:/lgithub.com/devicetree-org/lopper, https://pypi.org/project/lopper/
Written in python, using pluggable backends (libfdt,dtlib) for device tree manipulations
Additional logic components in the future

- Works with dts, dtb and yaml inputs

< Supports unit operations (lops) and more complex python assist modules
- Depending on the task, bothcan be used

+ Flexible output / input is provided via python assists

- Performs validation and consistency checking

AMDZ

Lopper: a framework

Common base for tooling inquiring or manipulating device trees
Built-in:

Core tree manipulation, merging

Input and output: dts/ dtb / yaml

Parsing: libfdt or dtlib

Assist / lop management

Device tree sanity and consistency checking

Tree manipulation library / routines

AMDZ

Lopper: a framework

- Optional / plugin:
- Assists provide Logic / semantics / context awareness

Front ends
* domains / protection, yaml expansion

Backends / Assists
* System Device tree pruning
°* RTOS/Bare Metal backend creates #defines into #include files (early availability)
° OpenAMP plugin that generates device specific DT for shared pages/IRQs
* Security / partitioning backend for subsystem and firewall information (TBD)
* Default Domain specification plugin creates a YAML file that can later be edited (under development)
* Verification assist that compares DTs from different domains to make sure they are compatible (TBD)
* Sub device tree / overlay extraction

Detailed tree analysis / modification
Source validation and expansion
ReST API: an HTTP server to support GUIs and other tooling

AMDZ

Lopper: components

inputs Lopper

outputs

devicetree.org
* bindings
* schemas

e

Systemdevice tree

Front ends

ruamel
or

pyyaml

}

assists !
1

Lopper:
Tree’
Fdt/Dt, Sdt

yaml / xlate
Device /

domain
lops

Back ends

ruamel
or

pyyaml

custom

‘Standard’ device tree
C-devicedrivers
Configuration

Board dts
overlays

dtc

Cpp

AMDZ

Xen Partial Device Trees

Similar to device tree overlays but older

Everything under the top-level passthrough
node is copied to the guest device tree

Xen reads partial device trees today to:

- configure guest device assignment
- describe passthrough hardware to the guest

Starting from a copy of the host device tree
node and editing it

- Removing unwanted properties

- Adding Xen specific properties

passthrough {

}s

compatible
ranges;
f#faddress-ce
#size-cells

= "simple-bus";

11s = <0x2>;
= <OXx2>;

timer@ff110000 {

}s

compatible = "cdns,ttc";

status = "okay";

interrupt-parent = <0xfde8>;

interrupts = <0x0 0x24 Ox4 Ox0 Ox25 Ox4 Ox0 Ox26 Ox4>;
reg = <0x0 Oxff110000 0x0 0x1000>;

timer-width = <0x20>;

xen,force-assign-without-iommu = <1>;

xen,reg = <0x0 Oxff110000 O0x0 0x1000 Ox0 Oxff110000>;
xen,path = "/axi/timer@ff110000";

AMDZ

Xen Partial Device Trees

- Xen specific properties and quirks:

Xxen,reg to specify memory mappings

xen,path points to the corresponding host device tree node (used for IOMMU configurations)
xen,force-assign-without-iommu when IOMMU configuration is not necessary
interrupt-parents = <Oxfde8> to point to the virtual interrupt controller of the guest

no iommus, because the IOMMU is used by Xen and not exposed to the guest
xen,passthrough; in the corresponding host device tree node to mark it for assignment

timer@ff110000 {
compatible = "cdns,ttc";
status = "okay";
interrupt-parent = <@xfde8>;
interrupts = <Ox0 0x24 Ox4 Ox0 Ox25 Ox4 Ox0 Ox26 Ox4>;
reg = <0x0 Oxff110000 0x0 0x1000>;
timer-width = <0x20>;
xen, force-assign-without-iommu = <1>;
xen,reg = <0x0 Oxff110000 Ox0 Ox1000 Ox0 Oxff110000>;
xen,path = "/axi/timer@ff110000";

}s

AMDZ

10

Xen Partial Device Trees: the problems

- Xen specific changes are not simple, but they could be automated more easily

- Xen properties aside, how to generate the partial device tree?
« Which properties to remove compared to the host device tree node?
How to solve clock dependencies? Do we need to include the clock controller too?
- What about power domains and reset lines?

- Generic problem: affects device assignment on any hypervisor and heterogeneous domains too

AMDZ

Xen Partial Device Trees: a more complex example

zyngmp-firmware { video clk {
compatible = "xlnx,zyngmp-firmware", "xlnx,zyngmp"; compatible = "fixed-clock";
#ticlock-cells = <Ox0>;
method = "smc";

clock-frequency = <0x1fc9f08>;

#power-domain-cells = <Ox1>; phandle = <0x7>;

phandle = <0x1>; };
pss_alt ref clk {

clock-controller { compatible = "fixed-clock";

#clock-cells = <Ox0>;

clock-frequency = <0x0>;

#clock-cells = <Ox1>; phandle = <0x8>;

}s

u-boot,dm-pre-reloc;

compatible = "xlnx,zyngmp-clk";

clocks = <Ox6 Ox7 Ox8 Ox9 Oxa>;

clock-names = "pss_ref_clk", "video_clk", [..]
"pss_alt_ref_clk”, mmc@F£170000 {
"aux_ref_clk", "gt crx_ref_clk"; compatible = "xlnx,zyngmp-8.9a", "arasan,sdhci-8.9a";
status = "okay";
phandle = <Ox3>; interrupt-parent = <@xfde8>;
}s interrupts = <0x0 0x31 0x4>;

reg = <0x0 Oxff170000 0x0 0x1000>;

i xlnx,device_id = <0Ox1>;
clock-names = "clk_xin", "clk_ahb";
pss_ref_clk { #clock-cells = <0x1>;
. . clock-output-names = "clk out sdi1", "clk in sdl";
compatible = "fixed-clock"; clocks = <0x3 ©x37 0Ox3 Ox1f>;
#clock-cells = <Ox0>; phandle = <0x37>;

Xen,reg = <Ox0 Oxff170000 0x0 0x1000 0x0 Oxff170000>;
clock-frequency = <0x1fc9350>; xen,pa%h = "/axi/mmc@ff170000"; ’

J - J
phandle = <0@x6>; };

}s AMDZ1

12

The Solution with Lopper

- Leverage core Lopper functionality + assists
Read the device tree -> LopperTree
- Analyze the devices
Manipulate the tree
Output dts/dtbs for passthrough devices
- Trigger image generation (optional)

- Requirements:

No hardcoded Xen knowledge
- Inputs + devicetree properties as triggers

Split functionality into generic / resuable components
Use Lopper Library routines where possible
Data driven + command line options for flexibility

- Works for any device that can be passed through

AMDZ

Implementation

- A pipeline of assists to extract device tree nodes and their dependencies
- extract: Generates a partial / extracted device tree starting from a target node
« extract-xen: Converts generic extracted tree to a Xen understood format
- Imagebuilder: Takes extracted dtbs and generates boot artifacts

._;

X -- [=]

X N
extract ™) extract-xen | borto
- S imagebuilder —) —

b | oY

o—eme—o

II.I/.II

AMDZ

14

Implementation: Assists

(regex)

Usage: extract-xen -t <target node> [OPTION]
-t target node (full path)
Usage: extract -t <target node> [OPTION] -p permissive matching on target node
-t target node (full path) -v enable verbose debug/processing
-1 include node if found in extracted node paths -0 output file for extracted device tree
-p permissive matching on target node (regex)
-v enable verbose debug/processing
-x exclude nodes or properties matching regex
-0 output file for extracted device tree
Usage: image-builder [--uboot] -o <output dir> --imagebuilder <path to imagebuilder>

wrapper around imagebuilder (https://gitlab.com/xen-project/imagebuilder)

and the supplied output directory

--uboot execute imagebuilder’s “uboot-script-gen”,
options: -t tftp -c¢ ./config,

-1 path to imagebuilder clone

-v enable verbose debug/processing

-0 output directory for files

with the

AMDZ

Demo

16

Lopper and Yocto
- Recipe is part of the meta-virtualization layer

- Current use cases:
- Configuration generation from device tree

- Modification of gemu device trees for Xen boot support
- See: gemuboot-xen-dtb.bbclass

- Future:
- Map devices to kernel configuration
- Boot artifacts generation

AMDZ

17

Future Work

Runtime dynamic device tree extraction -> overlay
- Containers
Partitioning

Validation and smart comparisions

Common library / routines:
- Code / driver generation
Device analysis and export

Replace scripts / custom tools and solutions

Generic image configuration and generation wrapper
Improved schema integration

Extend Yocto Project integration

AMDZ

Questions?

AMD

