
1 |

Lopper
Bruce Ashfield & Stefano Stabellini

ELC NA 2022

2 |

System Device Tree & Heterogeneous computing

• Heterogeneous System with multiple HW components

• A72s, R5s, PMC, MicroBlaze clusters

• Multiple Execution Domains with its own address map

• Each domain with its own operating system

• Multiple execution levels (EL)

• Multiple Security Environments

• E.g.: U-Boot, TF-A, Xen, Linux, OPTEE, Zephyr, baremetal

• The system is divided into domains

• Each domain is an independent operating environment with

CPUs, memory, and devices allocated to it

• System Device Tree: extending DT to describe the full system

• Including multiple heterogeneous CPU clusters

• Including multiple domains

Secure State

Trusted Firmware (TF)

App App

Trusted Execution
Environment (TEE)

Non-secure State

Hypervisor

App App

Linux

App

RTOS

FPGA

MicroBlaze

App App

RTOS

MicroBlaze

App

Bare Metal

A72
Core 0

A72
Core 1

RPU

R5 Core 0

App App

RTOS

R5 Core 1

App

Bare Metal

Container

App

EL0

EL1

EL2

EL3

App App

Platform Management Controller (PMC)

PLM

D
e

vi
c
e

s

M
e

m
o

ry

3 |

System Device Tree

• Device Tree expresses HW information relevant to an operating environment

• Used by U-Boot, Linux, Xen, TF-A and others

• System Device Tree is an extension to Device Tree to describe the full system

• It describes multiple CPU clusters with different address maps
• Both A72s and R5s

• It describes multiple domains and the resources allocated to each

• A domain could be:

• an heterogenous computing unit, e.g. Zephyr on R5s

• an operating environment at a specific execution level, e.g. OPTEE

• a virtual machine, e.g. a Xen domain

4 |

Lopper: an introduction

• Lopper

• Is a framework for manipulating System Device Trees and transforming information

• Original goal / concept was to produce standard devices trees to support existing platforms/OSs

• Produces any number of outputs: device trees, generated code, custom, etc

• Flexible development / runtime workflow integration

• Data driven

• A few details:

• OpenSource, BSD-3 License
• https://github.com/devicetree-org/lopper, https://pypi.org/project/lopper/

• Written in python, using pluggable backends (libfdt,dtlib) for device tree manipulations

• Additional logic components in the future

• Works with dts, dtb and yaml inputs

• Supports unit operations (lops) and more complex python assist modules

• Depending on the task, both can be used

• Flexible output / input is provided via python assists

• Performs validation and consistency checking

5 |

Lopper: a framework

• Common base for tooling inquiring or manipulating device trees​

• Built-in:

• Core tree manipulation, merging

• Input and output: dts / dtb / yaml

• Parsing: libfdt or dtlib

• Assist / lop management

• Device tree sanity and consistency checking

• Tree manipulation library / routines

6 |

Lopper: a framework

• Optional / plugin:

• Assists provide Logic / semantics / context awareness

• Front ends
• domains / protection, yaml expansion

• Backends / Assists
• System Device tree pruning

• RTOS/Bare Metal backend creates #defines into #include files (early availability)

• OpenAMP plugin that generates device specific DT for shared pages/IRQs

• Security / partitioning backend for subsystem and firewall information (TBD)

• Default Domain specification plugin creates a YAML file that can later be edited (under development)

• Verification assist that compares DTs from different domains to make sure they are compatible (TBD)

• Sub device tree / overlay extraction

• Detailed tree analysis / modification

• Source validation and expansion

• ReST API: an HTTP server to support GUIs and other tooling

7 |

Lopper: components

Lopper Core

YAML

dts

other

YAML

dts

dtb

other

ruamel
or
pyyaml

libfdt
or
dtlib

Lopper

Lopper:
Tree,
Fdt/Dt, Sdt
..

importer

yaml / xlate

Device /

domain
lops

exporter
ruamel
or
pyyaml

libfdt
or
dtlib

custom custom

lops

inputs outputs

Front ends Back ends

assists

Linux

RTOS

Bare Metal

devicetree.org

• bindings
• schemas

• ….

• System device tree
• Board dts
• overlays

• ‘Standard’ device tree
• C-device drivers
• Configuration
• ….

dtc cpp

8 |

Xen Partial Device Trees

• Similar to device tree overlays but older

• Everything under the top-level passthrough

node is copied to the guest device tree

• Xen reads partial device trees today to:

• configure guest device assignment

• describe passthrough hardware to the guest

• Starting from a copy of the host device tree

node and editing it

• Removing unwanted properties

• Adding Xen specific properties

passthrough {
compatible = "simple-bus";
ranges;
#address-cells = <0x2>;
#size-cells = <0x2>;

timer@ff110000 {
compatible = "cdns,ttc";
status = "okay";
interrupt-parent = <0xfde8>;
interrupts = <0x0 0x24 0x4 0x0 0x25 0x4 0x0 0x26 0x4>;
reg = <0x0 0xff110000 0x0 0x1000>;
timer-width = <0x20>;
xen,force-assign-without-iommu = <1>;
xen,reg = <0x0 0xff110000 0x0 0x1000 0x0 0xff110000>;
xen,path = "/axi/timer@ff110000";

};
};

9 |

Xen Partial Device Trees

• Xen specific properties and quirks:

• xen,reg to specify memory mappings

• xen,path points to the corresponding host device tree node (used for IOMMU configurations)

• xen,force-assign-without-iommu when IOMMU configuration is not necessary

• interrupt-parents = <0xfde8> to point to the virtual interrupt controller of the guest

• no iommus, because the IOMMU is used by Xen and not exposed to the guest

• xen,passthrough; in the corresponding host device tree node to mark it for assignment

timer@ff110000 {
compatible = "cdns,ttc";
status = "okay";

interrupt-parent = <0xfde8>;
interrupts = <0x0 0x24 0x4 0x0 0x25 0x4 0x0 0x26 0x4>;
reg = <0x0 0xff110000 0x0 0x1000>;
timer-width = <0x20>;
xen,force-assign-without-iommu = <1>;

xen,reg = <0x0 0xff110000 0x0 0x1000 0x0 0xff110000>;
xen,path = "/axi/timer@ff110000";

};

10 |

Xen Partial Device Trees: the problems

• Xen specific changes are not simple, but they could be automated more easily

• Xen properties aside, how to generate the partial device tree?

• Which properties to remove compared to the host device tree node?

• How to solve clock dependencies? Do we need to include the clock controller too?

• What about power domains and reset lines?

• Generic problem: affects device assignment on any hypervisor and heterogeneous domains too

11 |

Xen Partial Device Trees: a more complex example

zynqmp-firmware {

compatible = "xlnx,zynqmp-firmware", "xlnx,zynqmp";

method = "smc";

#power-domain-cells = <0x1>;

phandle = <0x1>;

clock-controller {

u-boot,dm-pre-reloc;

#clock-cells = <0x1>;

compatible = "xlnx,zynqmp-clk";

clocks = <0x6 0x7 0x8 0x9 0xa>;

clock-names = "pss_ref_clk", "video_clk",

"pss_alt_ref_clk",

"aux_ref_clk", "gt_crx_ref_clk";

phandle = <0x3>;

};

};

pss_ref_clk {

compatible = "fixed-clock";

#clock-cells = <0x0>;

clock-frequency = <0x1fc9350>;

phandle = <0x6>;

};

video_clk {
compatible = "fixed-clock";
#clock-cells = <0x0>;
clock-frequency = <0x1fc9f08>;
phandle = <0x7>;

};

pss_alt_ref_clk {
compatible = "fixed-clock";
#clock-cells = <0x0>;
clock-frequency = <0x0>;
phandle = <0x8>;

};

[…]

mmc@ff170000 {
compatible = "xlnx,zynqmp-8.9a", "arasan,sdhci-8.9a";
status = "okay";
interrupt-parent = <0xfde8>;
interrupts = <0x0 0x31 0x4>;
reg = <0x0 0xff170000 0x0 0x1000>;
xlnx,device_id = <0x1>;
clock-names = "clk_xin", "clk_ahb";
#clock-cells = <0x1>;
clock-output-names = "clk_out_sd1", "clk_in_sd1";
clocks = <0x3 0x37 0x3 0x1f>;
phandle = <0x37>;
xen,reg = <0x0 0xff170000 0x0 0x1000 0x0 0xff170000>;
xen,path = "/axi/mmc@ff170000";

};

12 |

The Solution with Lopper

• Leverage core Lopper functionality + assists

• Read the device tree -> LopperTree

• Analyze the devices

• Manipulate the tree

• Output dts/dtbs for passthrough devices

• Trigger image generation (optional)

• Requirements:

• No hardcoded Xen knowledge

• Inputs + devicetree properties as triggers

• Split functionality into generic / resuable components

• Use Lopper Library routines where possible

• Data driven + command line options for flexibility

• Works for any device that can be passed through

13 |

Implementation

• A pipeline of assists to extract device tree nodes and their dependencies

• extract: Generates a partial / extracted device tree starting from a target node

• extract-xen: Converts generic extracted tree to a Xen understood format

• Imagebuilder: Takes extracted dtbs and generates boot artifacts

extract
board

devicetree

Lopper

extract-xen

imagebuilder

14 |

Implementation: Assists

Usage: extract-xen -t <target node> [OPTION]

-t target node (full path)

-p permissive matching on target node (regex)

-v enable verbose debug/processing

-o output file for extracted device tree

Usage: extract -t <target node> [OPTION]

-t target node (full path)

-i include node if found in extracted node paths

-p permissive matching on target node (regex)

-v enable verbose debug/processing

-x exclude nodes or properties matching regex

-o output file for extracted device tree

Usage: image-builder [--uboot] -o <output dir> --imagebuilder <path to imagebuilder>

wrapper around imagebuilder (https://gitlab.com/xen-project/imagebuilder)

--uboot execute imagebuilder's "uboot-script-gen", with the

options: -t tftp -c ./config, and the supplied output directory

-i path to imagebuilder clone

-v enable verbose debug/processing

-o output directory for files

Demo

16 |

Lopper and Yocto

• Recipe is part of the meta-virtualization layer

• Current use cases:

• Configuration generation from device tree

• Modification of qemu device trees for Xen boot support
• See: qemuboot-xen-dtb.bbclass

• Future:

• Map devices to kernel configuration

• Boot artifacts generation

• …

17 |

Future Work

• Runtime dynamic device tree extraction -> overlay

• Containers

• Partitioning

• Validation and smart comparisions

• Common library / routines:

• Code / driver generation

• Device analysis and export

• Replace scripts / custom tools and solutions

• Generic image configuration and generation wrapper

• Improved schema integration

• Extend Yocto Project integration

Questions?

