
Mike Anderson
mike@theptrgroup.com

http://www.theptrgroup.com

Scheduler Options in
big.LITTLE Android Platforms

ABS-SanJose-0323-2 Copyright 2015, The PTR Group, Inc.

big.LITTLE ARM architectures

Cluster Scheduling

In-Kernel Switcher (IKS)

Global Task Scheduler

Selecting the right CPU for the job

Energy-aware scheduling

Anything Android specific?

Summary

ABS-SanJose-0323-3 Copyright 2015, The PTR Group, Inc.

Traditional ARM Architectures

Traditional ARM multi-core SoCs are
symmetric

All cores are the same variety such as A9s or
A15s

This makes scheduling very straightforward

CPU migration is probably not a problem for
most Android users

Hitting a cold cache is not really much of a
problem on a handheld device because of the
human in the loop

ABS-SanJose-0323-4 Copyright 2015, The PTR Group, Inc.

Power Management Issues

Assuming that the CPU is already capable of power
gating, DVFS is a significant player in power
management
Given a fully symmetric SoC, opportunities for power
scaling were largely limited to DVFS in the kernel

Dissipated power over time = C*V2*A*f
C is capacitance of gates
V is voltage (note this is a squared term)
A is activity factor (average number of switching events in the
transistors)
f is the frequency

Changing frequency requires a change in voltage
But, all devices on the bus need to be aware and capable
of the new frequencies

However, even with DVFS, the Cortex A9 would still
use a lot of power even if idle

ABS-SanJose-0323-5 Copyright 2015, The PTR Group, Inc.

big.LITTLE ARM Architectures

In 2011, ARM introduced the Cortex A7
1.5x the processing capability of the A8 with
1/5 the power consumption

The intent was to pair the A7 with the A15 as
a way of saving power

As the workload dropped below a certain
point, the A15 cores would be shut off
and the A7 cores would take over

The first commercial implementation of
big.LITTLE was the Samsung Exynos 5410
used in the Samsung Galaxy S4

ABS-SanJose-0323-6 Copyright 2015, The PTR Group, Inc.

Example big.LITTLE Implementations

Source: The respective manufacturerc

ABS-SanJose-0323-7 Copyright 2015, The PTR Group, Inc.

Cluster Switch Scheduling

In the initial implementation of the
big.LITTLE architecture, the CPU was
cluster scheduled

Either the big or the LITTLE cluster was
active, but not both

Significant impact on performance during
the cluster switch

Cache coherency hardware is a must

You still have inefficiencies if all of the
processors in the cluster were activated, but

ABS-SanJose-0323-8 Copyright 2015, The PTR Group, Inc.

Cluster Switching and Android

The cluster switch
approach was the
default scheduler in
Android 4.2.2

This was commonly encountered on
Samsung tablets and international phones
using the Exynos CPU family

International versions of Samsung phones

Android uses cgroup and DVFS mechanisms
to help make cluster decisions

CPU affinity can be used to override
scheduling decisions

Source: linaro.org

ABS-SanJose-0323-9 Copyright 2015, The PTR Group, Inc.

Problems with Cluster Switching

Cluster switching does conserve power,
but not as much as people hoped

Problems with having to do an all-or-
nothing approach to switching the cluster
left developers thinking there must be a
better way

Hardware implementation problems in
early big.LITTLE SoCs precluded all other
alternatives

give up

ABS-SanJose-0323-10 Copyright 2015, The PTR Group, Inc.

ARM/Linaro to the Rescue

Working in conjunction with ARM and using a new
ARM reference board, Linaro developers came up
with two alternative approaches for using
big.LITTLE processors

In the first, the big and LITTLE cores are teamed
up into virtual CPUs

One big and one LITTLE core per VCPU

Whether the application runs on the big or the
LITTLE core is based on CPU load for that task

However, we still have at most four cores running at
any point in time on an octa-core platform

Referred to as In-Kernel Switching (IKS) or CPU
Migration

ABS-SanJose-0323-11 Copyright 2015, The PTR Group, Inc.

Example IKS

This approach groups
processors into
collections of virtual
cores where big and
LITTLE processors are
teamed together
Again, the CPU load of the task is used to
determine if the big or LITTLE core actually
runs the task
This approach allows a mixture of big and
LITTLE cores to run as needed

of the cores at any point in time

Source: linaro.org

ABS-SanJose-0323-12 Copyright 2015, The PTR Group, Inc.

With processors like
hexa-core,

multiple LITTLEs can
be teamed with a
single big
While this works, it

like to have in scheduling
IKS patch came out for the 3.10 Linaro Stable
Kernel (LSK) and 3.14 Linux mainline
Google does not ship a kernel capable of IKS
at this time

Source: samsung.com

ABS-SanJose-0323-13 Copyright 2015, The PTR Group, Inc.

Getting Maximum Performance

Given that

big and LITTLE
cores on the
platform, it might be nice to be able to use all of
them at the same time for a burst of computation

That is the goal of the Global Task Scheduler a.k.a.
big.LITTLE MP

In this option, each processor core is active and
can be scheduled

The previous load for the task determines which core
the task runs on

Again, CPU affinity can be used to lock the task to a
particular core

Source: linaro.org

ABS-SanJose-0323-14 Copyright 2015, The PTR Group, Inc.

Problems with big.LITTLE MP

The original big.LITTLE MP was largely
developed and put forward by ARM

Unfortunately, there were a lot of places that
needed to be touched in the kernel to make it
happen

Nonetheless, the GTS scheduler did get deployed
in several of the Samsung devices like the
international Galaxy S4/S5 and some
Chromebooks

Since many of the changes for this approach
would affect non-ARM architectures as well,
this approach was rejected and a new
approach is being developed

ABS-SanJose-0323-15 Copyright 2015, The PTR Group, Inc.

Energy Aware Scheduling (EAS)

EAS is a set of kernel extensions that
introduces an energy-based model for
power-performance control and task
scheduling

The scheduler will be the focal point for
power-performance decisions rather than
cpufreq or cpuidle subsystems

The goal is use a scheduler-driven policy
and a small set of well-defined tunables
to simplify power/performance
management

ABS-SanJose-0323-16 Copyright 2015, The PTR Group, Inc.

EAS #2

Using cpufreq makes energy policy creation
rather complicated

cpufreq, cpuidle and the scheduler tend to get in
each others ways

EAS aims to provide tools that assist with the
creation and qualification of an energy
model

This includes the quantification of energy usage
per workload as well as power-performance
tuning

EAS is the culmination of a series of
discussions on the LKML as well as
discussions at various conferences

ABS-SanJose-0323-17 Copyright 2015, The PTR Group, Inc.

EAS Moving into the Kernel

EAS is not a fait acompli at this point

There are several board tracks that need
to be addressed before the work is
complete including:

SCHED-CORE
Introduces the CPU energy model

Applies the energy model for load-balance
decisions

Applies the energy model for power-performance
control

Modifications to the CFS to accommodate the
energy model approach

ABS-SanJose-0323-18 Copyright 2015, The PTR Group, Inc.

Kernel Tracks #2

SCHED-CPUFREQ

Modifications to the cpufreq code to enable the
scheduler to control DVFS OPP transitions

Creation of a simple, scheduler-driven policy for
DVFS

Creation of a set of tunables to provide the knobs
needed to enable power/performance options

SCHED-CPUIDLE

Modifications to make the scheduler aware of all of
the idle states supported by CPUs in the system

Includes the cost implications of entering and exiting
power states as well as idle state tracking

Remove any redundant idle state-specific data

ABS-SanJose-0323-19 Copyright 2015, The PTR Group, Inc.

User-Space Tools

Idlestat

various idle and operating states

Uses FTRACE function to monitor entry and exit of C- and P-state
transitions over time

Tracks the times for entry and exit of the states as well as any raised
IRQs

Following a successful run, the trace data is parsed to show:
The total, average, min and max of time spent in each C- and P- state
Tracks the same stats for when all of the CPUs in a cluster where in the
same C-state per cluster
Tracks the number of times an IRQ cause a CPU to exit the idle state on
a per-CPU and per-IRQ basis

While there is some overlap with powertop, idlestat is designed to
be non-interactive and provide more details on state entry and exit
Source code git tree is available from:

http://git.linaro.org/power/idlestat.git

ABS-SanJose-0323-20 Copyright 2015, The PTR Group, Inc.

User-Space Tools #2

Workload generator

Based on rt-app, the workload generator
emulates typical mobile device use cases and
gives runtime information

Uses JSON files for describing the use cases

Allows you to create a simulated work load
to capture the information from idlestat for
creating a power-performance policy

Linaro extensions to rt-app are available
here:

https://git.linaro.org/power/rt-app.git

ABS-SanJose-0323-21 Copyright 2015, The PTR Group, Inc.

The EAS kernel is available as a back-port to the
currently available Linaro Stable Kernel v3.10

https://git.linaro.org/kernel/eas-backports.git

Relevant discussions for EAS development can be
found on the eas-dev public mailing list at
http://lists.linaro.org/mailman/listinfo/eas-dev
There will be publically open, bi-weekly telephone
calls for purposes of discussing progress
For more information, go to
https://wiki.linaro.org/WorkingGroups/
PowerManagement/Resources/EAS

and
https://rt.wiki.kernel.org/index.php/
Energy_Aware_Scheduling

ABS-SanJose-0323-22 Copyright 2015, The PTR Group, Inc.

Anything Android Specific?

Fortunately, no

Since the Android kernel is really the
Linux kernel, these changes apply equally
across all of the operating systems using
the Linux kernel

When can we expect to see these
changes?

The IKS was mainlined in 3.14

GTS is dead except for the few manufacturers
that deployed it

EAS is still a work in progress

ABS-SanJose-0323-23 Copyright 2015, The PTR Group, Inc.

Summary

Power management is an ever-important
topic for handheld devices

The scope of big.LITTLE processors will likely
continue to expand as more silicon vendors
embrace the technology

Current Android uses the cluster-based
approach to scheduling

The IKS is available in mainline a/o 3.14

EAS promises to be the best overall solution

Only time will tell

