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ABSTRACT

With new advanced debug and trace features, developer
will find troubleshooting with printf very archaic.
Developers can now use debug features like reversible
debug, record and replay, multi-process, multi-
architecture, multi-operating system, non-stop, global
breakpoint, core-awareness, even dynamic tracepoint on
a live system. For troubleshooting a live system without
causing overhead, static tracepoints now offer a rich set
of features. In the past year, those features have been
Introduced In open source tools. This presentation will
describe those features with GDB, LTTng, the Eclipse
Debugger Services Framework, the Eclipse Tracing
Framework and will give an overview of the whole Linux
toolchain integration with GNU and Eclipse tools.
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ABOUT ME

> Developer Tool Manager at Ericsson, helping Ericsson sites
to develop better software efficiently

> Background in telecommunication systems

> A standards-based communications-class server:
— Open, standards-based common platform
— High availability (greater than 99.999%)

— Broad range of support for both infrastructure and value-added
applications

— Multimedia, network and application processing capabilities
— Product life-cycle of 7 years
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ABOUT ME

> Improving development tools with research projects, open
source tools, tool vendors and other companies

> GDB improvements, non-stop, multi-process, global breakpoint,
dynamic tracepoint, core awareness, OS awareness, ... with
CodeSourcery

> Eclipse GDB integration, debug analysis with CDT
community e.g. WindRiver

> Linux tracing research project with Ecole Polytechnique
(Prof. Michel Dagenais)



ABOUT ME
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> Linux tracing: user space tracing, GDB integration, binary
format, buffering scheme, ... with EfficiOS (Mathieu
Desnoyers)

> Eclipse Linux tracing integration and analysis with Red Hat

> Organizing Linux Tracing Summit:
2008:
2009:
2010:
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GDB - UBIQUITOUS DEBUGER

> Embedded system development usually requires different targets

> Switching to a different debugger each time is a mess

> One GDB/Eclipse binary on host can support
— Multi architecture ->GDB target description <architecture> e.g. x86
— Multi operating systems ->GDB target description <osabi> e.g. linux
— Simulator/Emulator ->Same protocol, MI, Eclipse e.g. Simics
— Unit test infrastructures -> Normal host base debug
— UML models with code generation -> Normal host/target debug
— Real target -> GDB stub (e.g. gdbserver on linux)
—JTAG -> many JTAG devices work with GDB
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MULTI-CORE-PROCESS-CONTEXT

> With multi-core more things are done in parallel in many processes
> Core awareness, i.e. which threads are running on which cores

> Application debug, attach to all processes of an application, step

the application, step one core, etc.

> Follow child process created with a fork, exec, handles dynamic

loading

> Many processes can potentially execute the same code, global

breakpoint will attach to the process only when the breakpoint is hit
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SPECIAL BREAKPOINT

> Conditional Breakpoint
— Stop only if the condition is true.
—C assert condition, i.e. breakpoint can happen when assertion is false

> Data Breakpoint or Watchpoint
— Stop whenever the value of an expression change
—Don't have to predict where this may happen
—Can be a complex expression or just a single variable

> Program event breakpoint
— Stop when a special event occurs
—throwing or catching of a C++ exception, unhandled exception
—call to exec, fork, close syscall



ALTERING o
eXeECUTION

> A bug was found

> Test a correction without recompiling, e.g.:
— store new values into variables or memory locations
— send a signal
— restart the program at a different address
— call a function
— code patching



05 AWARENESS
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Some programs have a deep interaction with the
operating system

Showing OS resources in the debugger can help e.qg:

process groups, processes, threads, file descriptors, internet-
domain sockets, shared memory segments, semaphore, message
gueues, loaded kernel modules, etc.

Not completed yet



NON-sTOP =

> Debugging a process by stopping its execution might cause
the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.
— Troubleshooting in the lab
— Chasing a race condition
— Debugging problems happening only under heavy load
— Investigating user interface issues

> Non-Stop allows to stop and examine one or more thread in
the debugger while other threads continue to execute freely




DeEBUG Z
RACEPOIN

> Sometimes it is not feasible to stop the execution of even one

thread, e.g. live system

> Tracepoint collects user-specified info and continues

execution without stopping any thread

> Dynamic i.e. inserted with a jump (in process), when a jump
cannot be used, a trap between the process and the debug

stub Is used

> Data collection can be conditional to a user specified expression



DeEBUG TRACEPOINT
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> Tracepoint actions:

—collect state trace data e.g. timestamp, and program data e.g.
variables, register, memory

—evaluate expressions , e.g. modify trace variables
—step (similar to breakpoint step) and collect data in each step

> A trace experiment can be stopped after the n'th hit

> Static tracepoint data i.e. LTTng UST can also be stored in
the debug tracepoint buffer

> Debug tracepoint are good when no static tracepoint are
available and for small quantity of data

> A tracer (e.g. LTTng) should be used to collect GB of data
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KPOINT

Save a snapshot of a program's state, including
memory, registers, variables, etc.

Can go back to the checkpoint, similar to a bookmark

Cannot do things like step backwards



REVERSIBLE DEBUG
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> Solving a bug Is similar to solving a mystery, one needs to
go back in time to understand what happened.

> When debugging, you realize that you have gone too far,
and some event of interest has already happened.

> Undo the changes in machine state that have taken place
as the program was executing normally I.e. variables,
registers etc. revert to their previous values.



REVERSIBLE K=
DeEBUG

> Process record and replay on Linux

> Simulators are typically faster than process record/replay

> A simple example, a variable doesn't have the right value
— add a watchpoint on the variable
— set the debug in reverse

— debugger will go back in time when the variable was last
changed



DeEBUGGER E,
EXTENSIONS

> A new debug feature can be added quickly

> Two mechanisms for extensions
— Command Files
— Python scripting

> A complete new feature can be added via python scripting
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cCLIPSE DEBUG 2
INTEGRATION

EMBEDDED CHALLENGES eECLIPSE DEBUG FRAMEWORK

> Slow connection to target > Strict Concurrency Model
— Ethernet ¢ Complex caching techniques
— JTAG « Exact control over when and what data is
— Serial Port - retrieved from target

* CMD Coalescing

> More visibility into target hw > Modular Debugger Implementation
— On-chip Peripherals » Selective re-use of a standard
— Processor Cache ‘ implementation
— Flash Memory » Custom services can be written to interact
_ Tracing with custom hardware

— Hardware Breakpoints

> Varied target hw architectures > Decoupled view layout from data
— Multiple Cores/CPUs/DSPs model

— Memory Models * Views layout and content easily
customized




SSSSSSSS

MULTI-CONTEXT

> Simultaneous debugging of multiple cores, processes,
threads, any objects represented in the debugger views

> Improving the workflow of multi-context debugging, e.g.
breadcrumb or one liner debug view, thousands of
processes, etc.

> Come and join the fun



cCLIPSE IDE,

WHAT FOR?
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Vv

Vv
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Multi-core systems with multiple processes

Debug multi-process, non-stop with cmmd line?

Performance analysis?

What Is your reason to use an IDE?



Context switching, bug, e-mail, new feature, iﬁterruptions, etc?
Code at the speed of thought? try Eclipse Mylyn 4

http://en.wikipedia.org/wiki/Task-focused interface
http://www.tasktop.com/videos/mylyn/webcast-mylyn-3.0.html
http://tasktop.com/videos/w-jax/kersten-keynote.html

L
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LINUX eCLIPSE PROJECTS

C/C++ Development Tools, Linux Tools, Remote System Explorer, Sequoyah, Mylyn, EGit,

! _

- @ GNU @‘ B gcov, Oprofile/gprof/perf CPPunit Ys‘ilf”llm_di‘ Q_EMU 33: git

Linux Tools \A/ Tools for Mobile Linux / Sequoyah
C/C++ Development Tool Mylyn, code at the speed of thought
Target Management EGit

Parallel Tools Platform Etc.
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cCLIPSE LINUX TOOLS -
PROJE

Contribute/Get
Involved

Contact Us
Downloads
C/C++ Tools Projects
Autotools
Callgraph
Changelog
Libhover
Man Page
LTTng
OProfile

Systemtap

Valgrind

Packaging/Distribution
Projects

eclipse-build
RPM Stubby
Specfile Editor

Distribution
Packaging Status

N
cCyo
s The Linux Tools project aims to bring a full featured C and C++ IDE to
:w e L m.,m.mw Linux developers. We build on the source editing and debugging features

. tall ecligse.pag of the COT and integrate popular native development tools such as the

| g sean e

| Eein M:—_—_— . GMU Autotools, Valgrind, OProfile, RPM, SystemTap, GCov, GProf,

: g;:'m LR R D e LTTng, etc. Current projects include Autotools build integration, a

3 ’E i Ll Valgrind heap usage analysis tool, and an OProfile call profiling tool. We
= St i '-':rrmwbmmimt;ﬂ ity also have projects implementing LTTng trace viewers and analyzers.
o] L Mewander urro PR s

The project also provides a place for Linux distributions to collaboratively
— overcome issues surrounding distribution packaging of Eclipse
technology. The project produces both best practices and tools related
to packaging. Since our 0.3.0 release, one of our features is a source
ol archive of the Eclipse SDK that can be used by all Linux distributions

e lichm o Fe e prube kernel fumcion | vl g T ST ITE 1 :
ity o & rénds [ emmenane | il building and distributing it.
o I_ Pl e ]
- thscra prue |
[perkeys

G Ld HernenLe
= Fé.l:il-:!u.\.l._'(.ll.'l:n_m':'\'f:"
* Ban

w B 100 U0 in otk nselizpndk pugirnTaish o win

Tprme e

Q’) Downloads
Get our latest 0.5 release (2010-03-18)!

: Get Involved
Find out how you can get involved with the project

w fin 4 | Fameanlnd ]

- Managed build for various toolchains, standard make build

- Source navigation, type hierarchy, call graph, include browser, macro definition browser, code
editor with syntax highlighting, folding and hyperlink navigation,

- Source code refactoring, static analysis

- Visual debugging tools, including memory, registers, and disassembly viewers
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TRACING (LTTNG)

Static Tracepoint:

> Created by designer before compilation at development time

> Static tracepoints represent wisdom of developers who are

most familiar with the code

> Helps developers to think about tracing (using only trial-error
dynamic traces is not efficient)

> The rest of the world can use them to extract a great deal of
useful information without having to know the code




TRACEABLE DATA
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Everything should be traceable
User space

Kernel

Non-Maskable Interrupt (NMI)
Thread and signal safe

Events may not be lost

Collect large trace data > 10GB



LOW OVERHEAD ™

Low overhead is key, better tracing means more
troubleshooting in field and quicker resolution of problems

Very efficient probes with static jump, no trap, no system call

Almost zero performance impact with instrumentation points
disabled (kernel: static jump, userspace: uses fast boolean
evaluation)

Enable instrumentation points have low performance impact,
l.e. a fast C function call

Zero copy from event generation to disk write



IME

W

n
w
"]
[]

> Accurate event ordering is key to enable trace
synchronization or correlation of traces from
— different CPU, cores
— traffic exchanged between nodes
— virtual machine, etc.

> LTTng timestamp precision is typically ~1ns i.e. cycle
counter
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TRACE DATA STORAGE

> Trace data is initially stored in shared memory buffers

> Tracing daemon then writes to the chosen trace-store:
— circular “flight recorder” buffer
— local disk
— remote disk
— remote stream, e.g. live monitoring

> Binary trace format highly optimized for compactness
> Self describing trace format

> Generate events with arbitrary number of arguments, variable
event sizes



SCALABILITY

Scalable to high core numbers

Walit free Read-Copy-Update mechanism
Per-CPU buffers

Non-blocking atomic operations

Simultaneous recording of multiple traces

— system administrator monitoring
— field engineered to troubleshoot a specific problem

Performance is more than 5 times better than dynamic tracing (e.qg.

with trap), this margin is increasing on systems with more cores



USER SPACE TRACING
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Very low disturbance, highly scalable

Uses user-space Read-Copy Updates (RCU) walit-free
synchronization to trace events without requiring any system
call or trap, I.e. same proven algorithms as kernel tracer

User space independent from the kernel tracer to ease
Integration, distribution, port

Conditional tracing in userspace



LTTng Low-Overhead Tracing Architecture

Host

liblttvtraceread (LGPL)

Trace-control and
data-retrieval socket
using TCF protocol

I

C/C++ Application Java Application Erlang Application

Target

Tracepoint™* \fra cepoint* \Tracepoinl*

Java LT Tng API Erlang LTTng API
LTTng C adaptor LTTng C adaptor
ust/libust (LGPL) ust/libust (LGPL) ust/libust (LGPL)

' s ! =

!

Shared-Memory | Trace-control Shared-Memory | Ttace-control Shared-Memory | Trace-control

per-CPU Buffers socket per-CPU Buffers|  socket per-CPU Buffers socket

I

==fll|||||||l||||||||=.IIIIIIIIIIIIIIIIIIIIIIEIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE'
( | ust/libustd LGPL) | wust/libustctl (LGPL) | \
LTTng Daemon (LGPL)
- Concurrent trace sessions
- Zero copy

*Tracepoint Characteristics

- Low overhead, no trap, no system call
- Signal, thread and NMI Safe

- Wait-free read-copy update

- Cycle-level time-stamp

- Dynamic activation

- Re-entrant kemel tracing

- Non-blocking atomic operations

- BSD license headers

- Streaming or regular mode for network and local file
- Flight recorder with save-on-demand
- Self-describing binary format highly optimized for huge traces

ust/libustctl (L GPL)

Shell command
or scripting (GPLv2)

Itt-control/liblttctl

\ | 1tt-control/liblttd (L GPL)|ltt-controlliblttctl (L GPLL/
4 = I
Linux E Trace-control virtual files
User Space =
Linux Kemel E Debliots
Shared-Memory LTTngFtrace

pet-CPU Buffers I N

Tracepoint*
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ANALYSIS

Resource view

Per thread execution state (control flow view)
Event rate histogram

Detailed event list, filtering

View synchronization

IRQ latency
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IulJ i mme I“. il mmllL...lllnmm.u.u e B .IMIJ;*lim..mml.1|.u\ L J_nw.n.n|.|lnllh.i i.t.\.lm.
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ANALYSIS

Trace synchronization
— Time correction

— Multi-core

— Multi-level

— Multi-node, distributed

Dependency analysis, delay analyzer
— Dependencies among processes
— How total elapsed time is divided into main components

Pattern matching

— Security

— Performance

— Testing lock acquisitions

Correlation

— Other format
— Text base logs
— Multi-level



MULTI-CORE E,
TROUBLESHOOTING

> Major software redesign is normally required to benefit from
multi-core architectures

> Software development industry and individual developers are
facing problems whose resolution requires to understand the
Interaction between all layers, including third party products e.qg.

« Hypervisor

. Operating system

. Virtual machines

. System libraries

« Applications

« Operation and maintenance

. Many Languages: C/C++, Java, Erlang
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COMPLEX SYSTEMS

> A typical system these days:
— Linux on a few cores
— Low-level RTOS on another core
— DSP's, etc.

> Developed in different context,
— In-house development
— Consultant
— Reusable components
— Third party products

> Understanding what is happening on the system requires
compatible tools, i.e. de facto standard



LINUX TOOL WORK E,
GROUP?

Open source contributions are growing exponentially, contributions
are sometimes incompatible or result in duplicated work:

—Many forks of GDB

—competing projects have emerged, e.qg. frysk, EDC

—Linux trace initiatives e.g. LTTng, ftrace, perf, utrace, SystemTap
—Very hard to plan cross project features

Let's take this to the next level
—not only contribute the parts needed for one company, plan together
—avoid incompatible data, inconsistent work, and duplicated efforts
—e.g. Executable and Linkable Format (ELF), DWARF debug format
—create an industry de-facto standard for tools, reference implementation
—Show it's easy to add features to tools
—Budget cycle! Ecosystem of tool improvements, support
—Linux foundation tool work group?

WE CAN DO BETTER THAN PRINTF
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