—

—

ERICSSON

LINUX TOOLCHAIN OVERVIEW

DEBUGGING (GDB), TRACING (LTTNG) FEATURES
TOOL WORK GROUP

DOMINIQUE <DOT> TOUPIN <AT> ERICSSON <DOT> COM

EMBEDDED LINUX CONFERENCE, APRIL 2010



SSSSSSSS

ABSTRACT

With new advanced debug and trace features, developer
will find troubleshooting with printf very archaic.
Developers can now use debug features like reversible
debug, record and replay, multi-process, multi-
architecture, multi-operating system, non-stop, global
breakpoint, core-awareness, even dynamic tracepoint on
a live system. For troubleshooting a live system without
causing overhead, static tracepoints now offer a rich set
of features. In the past year, those features have been
Introduced In open source tools. This presentation will
describe those features with GDB, LTTng, the Eclipse
Debugger Services Framework, the Eclipse Tracing
Framework and will give an overview of the whole Linux
toolchain integration with GNU and Eclipse tools.



SSSSSSSS

ABOUT ME

> Developer Tool Manager at Ericsson, helping Ericsson sites
to develop better software efficiently

> Background in telecommunication systems

> A standards-based communications-class server:
— Open, standards-based common platform
— High availability (greater than 99.999%)

— Broad range of support for both infrastructure and value-added
applications

— Multimedia, network and application processing capabilities
— Product life-cycle of 7 years



SSSSSSSS

ABOUT ME

> Improving development tools with research projects, open
source tools, tool vendors and other companies

> GDB improvements, non-stop, multi-process, global breakpoint,
dynamic tracepoint, core awareness, OS awareness, ... with
CodeSourcery

> Eclipse GDB integration, debug analysis with CDT
community e.g. WindRiver

> Linux tracing research project with Ecole Polytechnique
(Prof. Michel Dagenais)



ABOUT ME

SSSSSSSS

> Linux tracing: user space tracing, GDB integration, binary
format, buffering scheme, ... with EfficiOS (Mathieu
Desnoyers)

> Eclipse Linux tracing integration and analysis with Red Hat

> Organizing Linux Tracing Summit:
2008:
2009:
2010:



SSSSSSSS

GDB - UBIQUITOUS DEBUGER

> Embedded system development usually requires different targets

> Switching to a different debugger each time is a mess

> One GDB/Eclipse binary on host can support
— Multi architecture ->GDB target description <architecture> e.g. x86
— Multi operating systems ->GDB target description <osabi> e.g. linux
— Simulator/Emulator ->Same protocol, MI, Eclipse e.g. Simics
— Unit test infrastructures -> Normal host base debug
— UML models with code generation -> Normal host/target debug
— Real target -> GDB stub (e.g. gdbserver on linux)
—JTAG -> many JTAG devices work with GDB



SSSSSSSS

MULTI-CORE-PROCESS-CONTEXT

> With multi-core more things are done in parallel in many processes
> Core awareness, i.e. which threads are running on which cores

> Application debug, attach to all processes of an application, step

the application, step one core, etc.

> Follow child process created with a fork, exec, handles dynamic

loading

> Many processes can potentially execute the same code, global

breakpoint will attach to the process only when the breakpoint is hit



SSSSSSSS

SPECIAL BREAKPOINT

> Conditional Breakpoint
— Stop only if the condition is true.
—C assert condition, i.e. breakpoint can happen when assertion is false

> Data Breakpoint or Watchpoint
— Stop whenever the value of an expression change
—Don't have to predict where this may happen
—Can be a complex expression or just a single variable

> Program event breakpoint
— Stop when a special event occurs
—throwing or catching of a C++ exception, unhandled exception
—call to exec, fork, close syscall



ALTERING o
eXeECUTION

> A bug was found

> Test a correction without recompiling, e.g.:
— store new values into variables or memory locations
— send a signal
— restart the program at a different address
— call a function
— code patching



05 AWARENESS

SSSSSSSS

Some programs have a deep interaction with the
operating system

Showing OS resources in the debugger can help e.qg:

process groups, processes, threads, file descriptors, internet-
domain sockets, shared memory segments, semaphore, message
gueues, loaded kernel modules, etc.

Not completed yet



NON-sTOP =

> Debugging a process by stopping its execution might cause
the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.
— Troubleshooting in the lab
— Chasing a race condition
— Debugging problems happening only under heavy load
— Investigating user interface issues

> Non-Stop allows to stop and examine one or more thread in
the debugger while other threads continue to execute freely




DeEBUG Z
RACEPOIN

> Sometimes it is not feasible to stop the execution of even one

thread, e.g. live system

> Tracepoint collects user-specified info and continues

execution without stopping any thread

> Dynamic i.e. inserted with a jump (in process), when a jump
cannot be used, a trap between the process and the debug

stub Is used

> Data collection can be conditional to a user specified expression



DeEBUG TRACEPOINT

SSSSSSSS

> Tracepoint actions:

—collect state trace data e.g. timestamp, and program data e.g.
variables, register, memory

—evaluate expressions , e.g. modify trace variables
—step (similar to breakpoint step) and collect data in each step

> A trace experiment can be stopped after the n'th hit

> Static tracepoint data i.e. LTTng UST can also be stored in
the debug tracepoint buffer

> Debug tracepoint are good when no static tracepoint are
available and for small quantity of data

> A tracer (e.g. LTTng) should be used to collect GB of data



SSSSSSSS

CHE

P

KPOINT

Save a snapshot of a program's state, including
memory, registers, variables, etc.

Can go back to the checkpoint, similar to a bookmark

Cannot do things like step backwards



REVERSIBLE DEBUG

SSSSSSSS

> Solving a bug Is similar to solving a mystery, one needs to
go back in time to understand what happened.

> When debugging, you realize that you have gone too far,
and some event of interest has already happened.

> Undo the changes in machine state that have taken place
as the program was executing normally I.e. variables,
registers etc. revert to their previous values.



REVERSIBLE K=
DeEBUG

> Process record and replay on Linux

> Simulators are typically faster than process record/replay

> A simple example, a variable doesn't have the right value
— add a watchpoint on the variable
— set the debug in reverse

— debugger will go back in time when the variable was last
changed



DeEBUGGER E,
EXTENSIONS

> A new debug feature can be added quickly

> Two mechanisms for extensions
— Command Files
— Python scripting

> A complete new feature can be added via python scripting



cCLIPSE DEBUG Z

TG Heme/ marc/ 150/ TADE/ex efJUnitProcess OU/Sre/EXpre . festApp.cc - EClipse SDK

File Edit Refactor Navigate Search Project

[0 |®® o | |

| ra = TC/c++ | 35Debug &
= ; \ <
35 Debug 2 = O||t= Variables 23 \W‘ Expressions]i it Registers%, = 0| @ Memory 52 . 3 5 o oy o E| 3 @| Ba
o ‘@ - pa < ||Monitors + % % |b <Hex>  |b <Traditional> & - <~ New Renderings...|
e e ————— - o e =75 | 8XBCOB4FTC  ©0OOORO3 0000OGD: OCOBAFSS ......... 0
= o ER Lol TERE fhdctzs E OXBCOB4FSB BOBAOR0S OCOBAFAC 1669BBBE ... 0..9»
M8 lniiPocssa T ies a int 18 b 0x0COB4F94 OCOBAFB4 09541007 AB264D6E  “0..0.T.°M
# Thread [2] 32943 (Running) b pa int * | 0xc0b47B8 @ 0xcOb4f80 0xBCOBAFAD @B08FEDC 0000AAEH OOOEAARD U3... . . ...
= i JUnitProcess_PT [162] < b int [2] | OXCOb4f7C 3 0xOCOB4FAC OCEB4FBC OF48B556 OCOTEFOO  %0..PpK. .o
< 7 Thread [1] 32942 (Suspended : Breakpoint) b[0] Lint i3 XOCOB4FB8  ©805B380 OCOBAFCC OB24COAS .3..10. ¥A
= mainExpressionTestApp() at fhome/marc/TSP/TADE/example/jUnit b[1] Jint 4 xBCOBAFC4 BCOTEFOB OBE37424 @COBAFDC  .o..5t. .00
= JUnitProcess_PT_Impl:handieTimeout() at /home/marc/TSP/TADE/E | b ptr int * 0x100 §| xBCOB4FDE ©B254AEl 0BE79245 0OOOOO00 &J%.H.c...
= 0xf4bb550 &l I T 0xBCOB4FDC OCOB4FFC OB2G65FEZ GBE79248 {i0..° &.H.
& gdb Name : b[@] =] OxBCOB4FEE 000OOREE 55555555 55555555 ... .UULUUU
Binary:11
<+ [E] MultiThread [C/C++ Application] Decimgl:B 8XBCOB4FF4 55555555 00000000 00000000 uuuu(.a.;. =
= 2 /home/marc/workspace-EclipseCon/MultiThread/Debug/MultiThread [13: Hex:0x3 3 BABLREIRAD (hRdAaGad ?L'qfﬁ'i@ AREIBRAL  RVIMEAR) e
o S hrent (A 3375 Eimpordid - Brodkediod Default:3 BX0COB500C 64D7626F 56075476 5B9C5918  obxdoTxV.Y
i p i p ) . Octal:03 = BxOCOB5018 73637185 786375FF 6AB36824 .gcsyucksh
= worker _thread() at /home/marc/workspace-EclipseCon/MultiThreac ‘ — ‘ _E| 0x0COB5024 GE886C2F 72110001 7704749C /Ll.n...r.t
= start_thread() at Oxb7fbedff ' - 4 -
= clone() at 0xb7f3949e % ExpressionTestApp.cc 32 - [g MultiThread.c | Bl Debug "’4 = B ||z DSF Disassembly R'\\_E Console|
## Thread [2] 13274 (Running) E?;‘ [~] || 1669b324: movl $0x8,-8x4(%ebp)
@ Thread [1] 13271 (Running) . . . 282 int* pa = &a;
& gdb 278int mainExpressionTestApp() { 1669b32b:  lea -Bx4(%ebp),%eax
= 279 printf("Running ExpressionTest App\n"); 1669b32e:  mov %eax, -0x8(%ebp)
s MultiThread 280 283 int b[2] = {3, 4};
Bl = I B n 1669b331: movl $@x3,-0x10(%ebp)
- 281 %nt a=8; 1669b338:  movl $8x4,-0xc(%ebp)
i : ® @& e | mE s ¥ =0 282 int* pa = &a; 284 b[e] = 5;
% = = 283 int b[2] = {3, 4}; » 1669b33F: | movl $0x5,-0x18(%ebp)
b o ot 285 b[1] = &;
%284 [e] = 5; 1669b346:  movl $Ox6,-BXc(%ebp)
285 b = OxcOb4f7c 287 int* ptr = new int;
286 1669b34d: movl $6x4, (%esp)
. - 1669b354:  call exfad1gde
* =i 2
287 int ptr = new 1int; s 1669b359:  mov Seax, -Bx14 (%ebp)
288 printf("ptr points to @x%X\n", ptr); 288 printf("ptr points to @x&X\n", ptr);
289 H 1669b35¢C: mov -0x14{%ebp),%eax
. 1669b35f: mov %eax,0x4(%esp)
220 testLogals{), . 1669b363: movl $8xf7fcdsc, (%esp)
291 testChildren(); [ || 1669b36a:  call exfsecafe
[ [7] [




-

cCLIPSE DEBUG 2
INTEGRATION

EMBEDDED CHALLENGES eECLIPSE DEBUG FRAMEWORK

> Slow connection to target > Strict Concurrency Model
— Ethernet ¢ Complex caching techniques
— JTAG « Exact control over when and what data is
— Serial Port - retrieved from target

* CMD Coalescing

> More visibility into target hw > Modular Debugger Implementation
— On-chip Peripherals » Selective re-use of a standard
— Processor Cache ‘ implementation
— Flash Memory » Custom services can be written to interact
_ Tracing with custom hardware

— Hardware Breakpoints

> Varied target hw architectures > Decoupled view layout from data
— Multiple Cores/CPUs/DSPs model

— Memory Models * Views layout and content easily
customized




SSSSSSSS

MULTI-CONTEXT

> Simultaneous debugging of multiple cores, processes,
threads, any objects represented in the debugger views

> Improving the workflow of multi-context debugging, e.g.
breadcrumb or one liner debug view, thousands of
processes, etc.

> Come and join the fun



cCLIPSE IDE,

WHAT FOR?

SSSSSSSS

Vv

Vv

Vv

A%

Multi-core systems with multiple processes

Debug multi-process, non-stop with cmmd line?

Performance analysis?

What Is your reason to use an IDE?



Context switching, bug, e-mail, new feature, iﬁterruptions, etc?
Code at the speed of thought? try Eclipse Mylyn 4

http://en.wikipedia.org/wiki/Task-focused interface
http://www.tasktop.com/videos/mylyn/webcast-mylyn-3.0.html
http://tasktop.com/videos/w-jax/kersten-keynote.html

L




ERICSSON

LINUX eCLIPSE PROJECTS

C/C++ Development Tools, Linux Tools, Remote System Explorer, Sequoyah, Mylyn, EGit,

! _

- @ GNU @‘ B gcov, Oprofile/gprof/perf CPPunit Ys‘ilf”llm_di‘ Q_EMU 33: git

Linux Tools \A/ Tools for Mobile Linux / Sequoyah
C/C++ Development Tool Mylyn, code at the speed of thought
Target Management EGit

Parallel Tools Platform Etc.



cCLIPSE FOUNDATION, 200 E
MEMBERS
® redn | “Bess 1 Google | 'élllﬁ'é!;' ORACLE!
EE:;‘%G ERICSSON E - 0 & Sony Eri|:55|3n-| E\lDKP!DA |
ARM REw... o7 (intel)  ~“freescate’

montavistas WIND RIVER' ENEA a%%ﬂl%ﬂ T(i.,
LYNUXWORKS™ ‘ImEh '“"'4‘-”“’“%4 SIEMENS S {4 B

@ - ®DDCt NEC £ XLNX:
m’s?:f ECOLE - E TR.

>OLYTECHNIQUE] WO

MONTREA LI e wsmue =



ﬁl . ! i =0|(%oui % =0
if (n <= 1) 2 =
simpleMassifTest [massif] lusr/bin/valgrind ( e_Lseretur‘n 1; ICO -
[PID: 7737] | return n * factoriall(n-1); i+ factoriall(uns
14000 1 £+ factorial2(uns
12000 . . . f e main() : int
10000 unsigned long long factorial2(unsigned e factoriall(uns
2 so000 uns:.gnedllung -.Long.rEt - :.I" . e factorial2(uns
" for (unsigned int i = 1; 1 <= n; i+
5 b00o ret *= 1i; .
4000 - return ret; v
2000 ———— [<( ) )] [l = 3 )>]
0 10 2018 CIC |1 - myproject '@ oProf ENE; Prubl]-@lTask} = Cnns] = F’rup}ﬁt Debu}‘i&'\falgrq@" P'rugr] =g

-#- LIse

Eile Edit Source Refactor MNawvic

li5 Project Explorer 33 - = 8

S

BS

s

& ¥ @ CPU_CLK_UNHALTED
- 5 current

- 100.00% in fhomefoverholtiworkspaces/runtime-EclipseApplication/factorial/D

K'l;&‘I..I’aI_I:Jrir"u:i %2 . [2 Proble

simpleMassifTest [massif] /| < fi) 49.46% in factoriall{unsigned long long) [factorial.cpp]

b 25 factorial

[ =5 memoryusage

@ B 27.30% on line 15
12.20% on line 16

Snapshot Time ( | ¥ = myproject |
1 113,8(| P [V Includes 9.22% on line 11

[<{

0 Writable

Sma...ert

3 113,91 simpleMemcheckTestc [l ] Vo]
=| ChangelLog . >
4 114,8 V6 vaignna 52 ey = O
B A4 | simpleMemcheckTest (1) [memcheck] fusrbinivalgrind (10-03-17 2:46
6 114.8i - (@ Use of uninitialised value of size 8 [PID: 12287
[l = at 0x40051E: main (simpleMemcheck Test.c:8) E e rf
b @ Invalid read of size 4 [PID: 12287] — p
h 3 Mraence tareninatinn aith dafaolt actinn AF cinnal 11 (SIEC CO
G "uplea e B




-

cCLIPSE LINUX TOOLS -
PROJE

Contribute/Get
Involved

Contact Us
Downloads
C/C++ Tools Projects
Autotools
Callgraph
Changelog
Libhover
Man Page
LTTng
OProfile

Systemtap

Valgrind

Packaging/Distribution
Projects

eclipse-build
RPM Stubby
Specfile Editor

Distribution
Packaging Status

N
cCyo
s The Linux Tools project aims to bring a full featured C and C++ IDE to
:w e L m.,m.mw Linux developers. We build on the source editing and debugging features

. tall ecligse.pag of the COT and integrate popular native development tools such as the

| g sean e

| Eein M:—_—_— . GMU Autotools, Valgrind, OProfile, RPM, SystemTap, GCov, GProf,

: g;:'m LR R D e LTTng, etc. Current projects include Autotools build integration, a

3 ’E i Ll Valgrind heap usage analysis tool, and an OProfile call profiling tool. We
= St i '-':rrmwbmmimt;ﬂ ity also have projects implementing LTTng trace viewers and analyzers.
o] L Mewander urro PR s

The project also provides a place for Linux distributions to collaboratively
— overcome issues surrounding distribution packaging of Eclipse
technology. The project produces both best practices and tools related
to packaging. Since our 0.3.0 release, one of our features is a source
ol archive of the Eclipse SDK that can be used by all Linux distributions

e lichm o Fe e prube kernel fumcion | vl g T ST ITE 1 :
ity o & rénds [ emmenane | il building and distributing it.
o I_ Pl e ]
- thscra prue |
[perkeys

G Ld HernenLe
= Fé.l:il-:!u.\.l._'(.ll.'l:n_m':'\'f:"
* Ban

w B 100 U0 in otk nselizpndk pugirnTaish o win

Tprme e

Q’) Downloads
Get our latest 0.5 release (2010-03-18)!

: Get Involved
Find out how you can get involved with the project

w fin 4 | Fameanlnd ]

- Managed build for various toolchains, standard make build

- Source navigation, type hierarchy, call graph, include browser, macro definition browser, code
editor with syntax highlighting, folding and hyperlink navigation,

- Source code refactoring, static analysis

- Visual debugging tools, including memory, registers, and disassembly viewers



SSSSSSSS

TRACING (LTTNG)

Static Tracepoint:

> Created by designer before compilation at development time

> Static tracepoints represent wisdom of developers who are

most familiar with the code

> Helps developers to think about tracing (using only trial-error
dynamic traces is not efficient)

> The rest of the world can use them to extract a great deal of
useful information without having to know the code




TRACEABLE DATA

SSSSSSSS

Everything should be traceable
User space

Kernel

Non-Maskable Interrupt (NMI)
Thread and signal safe

Events may not be lost

Collect large trace data > 10GB



LOW OVERHEAD ™

Low overhead is key, better tracing means more
troubleshooting in field and quicker resolution of problems

Very efficient probes with static jump, no trap, no system call

Almost zero performance impact with instrumentation points
disabled (kernel: static jump, userspace: uses fast boolean
evaluation)

Enable instrumentation points have low performance impact,
l.e. a fast C function call

Zero copy from event generation to disk write



IME

W

n
w
"]
[]

> Accurate event ordering is key to enable trace
synchronization or correlation of traces from
— different CPU, cores
— traffic exchanged between nodes
— virtual machine, etc.

> LTTng timestamp precision is typically ~1ns i.e. cycle
counter



SSSSSSSS

TRACE DATA STORAGE

> Trace data is initially stored in shared memory buffers

> Tracing daemon then writes to the chosen trace-store:
— circular “flight recorder” buffer
— local disk
— remote disk
— remote stream, e.g. live monitoring

> Binary trace format highly optimized for compactness
> Self describing trace format

> Generate events with arbitrary number of arguments, variable
event sizes



SCALABILITY

Scalable to high core numbers

Walit free Read-Copy-Update mechanism
Per-CPU buffers

Non-blocking atomic operations

Simultaneous recording of multiple traces

— system administrator monitoring
— field engineered to troubleshoot a specific problem

Performance is more than 5 times better than dynamic tracing (e.qg.

with trap), this margin is increasing on systems with more cores



USER SPACE TRACING

SSSSSSSS

Very low disturbance, highly scalable

Uses user-space Read-Copy Updates (RCU) walit-free
synchronization to trace events without requiring any system
call or trap, I.e. same proven algorithms as kernel tracer

User space independent from the kernel tracer to ease
Integration, distribution, port

Conditional tracing in userspace



LTTng Low-Overhead Tracing Architecture

Host

liblttvtraceread (LGPL)

Trace-control and
data-retrieval socket
using TCF protocol

I

C/C++ Application Java Application Erlang Application

Target

Tracepoint™* \fra cepoint* \Tracepoinl*

Java LT Tng API Erlang LTTng API
LTTng C adaptor LTTng C adaptor
ust/libust (LGPL) ust/libust (LGPL) ust/libust (LGPL)

' s ! =

!

Shared-Memory | Trace-control Shared-Memory | Ttace-control Shared-Memory | Trace-control

per-CPU Buffers socket per-CPU Buffers|  socket per-CPU Buffers socket

I

==fll|||||||l||||||||=.IIIIIIIIIIIIIIIIIIIIIIEIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE'
( | ust/libustd LGPL) | wust/libustctl (LGPL) | \
LTTng Daemon (LGPL)
- Concurrent trace sessions
- Zero copy

*Tracepoint Characteristics

- Low overhead, no trap, no system call
- Signal, thread and NMI Safe

- Wait-free read-copy update

- Cycle-level time-stamp

- Dynamic activation

- Re-entrant kemel tracing

- Non-blocking atomic operations

- BSD license headers

- Streaming or regular mode for network and local file
- Flight recorder with save-on-demand
- Self-describing binary format highly optimized for huge traces

ust/libustctl (L GPL)

Shell command
or scripting (GPLv2)

Itt-control/liblttctl

\ | 1tt-control/liblttd (L GPL)|ltt-controlliblttctl (L GPLL/
4 = I
Linux E Trace-control virtual files
User Space =
Linux Kemel E Debliots
Shared-Memory LTTngFtrace

pet-CPU Buffers I N

Tracepoint*




SSSSSSSS

ANALYSIS

Resource view

Per thread execution state (control flow view)
Event rate histogram

Detailed event list, filtering

View synchronization

IRQ latency



File Edit Navigate Search Project Run Window Help

J Egv quv Jﬂfv J v FEv %5 5w e Ff E@Remote S... |y 1TTng
BRem |% Proje 2 3= Contr} = B8 | =k contral Flow 2 BE R e & & g ¥ =40
~ 1= MyFirstProject kwin 2078 {2078 {2074 {0 (14451 | 933161084; Trace3-1058542 3
~ (= Experiments [2] kglobalaccet 2080 {2080 |1 0 14451 | 933183524 Trace3-1058542
b = MyFirstExperiment [1] plasma-desk 2082 2082 1 0 14451 933187069 Trace
&= MySecExp [1] knotify4 | 2084 : 14451
P = Traces [3] plasma—deslv: 2085 | : 14451
$ 14451

b = MyOtherProject kio_file i 2093

= RemoteSystemsTempFiles

Be%esaafg-=0

%= Resources 8

Time scale: 14455:130 . 5 A 14455:155 14455:160 14455:165
= Process Group [Trace3-1058542] .
CPU O AV o T Tl X
o)\ R\
IRQ 12 r‘
IRQ 14
‘ IRzl 5
D —
e
\ - ) |
o ctatistics 10 =0
Level ~ | Number of Events | CPU Time Cumulative CPU Time  Elapsed Time :
b [&] Trace2-15471 15471 0.058638297 0.948768755 0.778642903
~ Trace3-1058542 1058542 19.50942369 1601.680898768 1571.576231994
v (= CPUs
~ 0 10903666 213.959894066 137939.698351616 12445.461427 17z
< (= Event Types
block/0/bio_backmerge 12468
block/0/bio_gueue 13943 E
E Properties 2 = B || i= Events - MySecExp 2 =0
= < ||| Timestamp Source Type Reference 2
Property 14455.133509163; Kemnel Core kemel/0/syscall_entry Y Sh e : syscall_id:195 ip:0x71ce00c3b78de416
14455.133512106: Kernel Core kemel/0/syscall_exit (d Bl S48 N ret:0
14455.133628886 Kemnel Core syscall_id:265 ip:0x17790109b60dae4c
i Trace3-1058542 | ret:0
race3-1058542 : syscall_id:3 ip:0x769e0003b78de416
: Trace3-1058542 : fd:8 count:4096
 Trace3-1058542 Cret-11 )
=
=8
End Time Range Current Time
|~/ sec (931728406 [%| ns (14471 || sec (526117348 || ns 19 || sec (594388942 || ns 14455 2 sec (133517431 [ ns
| [>]

IulJ i mme I“. il mmllL...lllnmm.u.u e B .IMIJ;*lim..mml.1|.u\ L J_nw.n.n|.|lnllh.i i.t.\.lm.




ERICSSON

ANALYSIS

Trace synchronization
— Time correction

— Multi-core

— Multi-level

— Multi-node, distributed

Dependency analysis, delay analyzer
— Dependencies among processes
— How total elapsed time is divided into main components

Pattern matching

— Security

— Performance

— Testing lock acquisitions

Correlation

— Other format
— Text base logs
— Multi-level



MULTI-CORE E,
TROUBLESHOOTING

> Major software redesign is normally required to benefit from
multi-core architectures

> Software development industry and individual developers are
facing problems whose resolution requires to understand the
Interaction between all layers, including third party products e.qg.

« Hypervisor

. Operating system

. Virtual machines

. System libraries

« Applications

« Operation and maintenance

. Many Languages: C/C++, Java, Erlang



SSSSSSSS

COMPLEX SYSTEMS

> A typical system these days:
— Linux on a few cores
— Low-level RTOS on another core
— DSP's, etc.

> Developed in different context,
— In-house development
— Consultant
— Reusable components
— Third party products

> Understanding what is happening on the system requires
compatible tools, i.e. de facto standard



LINUX TOOL WORK E,
GROUP?

Open source contributions are growing exponentially, contributions
are sometimes incompatible or result in duplicated work:

—Many forks of GDB

—competing projects have emerged, e.qg. frysk, EDC

—Linux trace initiatives e.g. LTTng, ftrace, perf, utrace, SystemTap
—Very hard to plan cross project features

Let's take this to the next level
—not only contribute the parts needed for one company, plan together
—avoid incompatible data, inconsistent work, and duplicated efforts
—e.g. Executable and Linkable Format (ELF), DWARF debug format
—create an industry de-facto standard for tools, reference implementation
—Show it's easy to add features to tools
—Budget cycle! Ecosystem of tool improvements, support
—Linux foundation tool work group?

WE CAN DO BETTER THAN PRINTF



ERICSSON




