
Linux Toolchain Overview

Debugging (GDB), Tracing (LTTng) Features
Tool Work group

Dominique <dot> toupin <at> Ericsson <dot> com

Embedded Linux Conference, April 2010

Abstract

With new advanced debug and trace features, developer
will find troubleshooting with printf very archaic.
Developers can now use debug features like reversible
debug, record and replay, multi-process, multi-
architecture, multi-operating system, non-stop, global
breakpoint, core-awareness, even dynamic tracepoint on
a live system. For troubleshooting a live system without
causing overhead, static tracepoints now offer a rich set
of features. In the past year, those features have been
introduced in open source tools. This presentation will
describe those features with GDB, LTTng, the Eclipse
Debugger Services Framework, the Eclipse Tracing
Framework and will give an overview of the whole Linux
toolchain integration with GNU and Eclipse tools.

About me

› Developer Tool Manager at Ericsson, helping Ericsson sites
to develop better software efficiently

› Background in telecommunication systems
› A standards-based communications-class server:

– Open, standards-based common platform
– High availability (greater than 99.999%)
– Broad range of support for both infrastructure and value-added

applications
– Multimedia, network and application processing capabilities
– Product life-cycle of 7 years

About me

› Improving development tools with research projects, open
source tools, tool vendors and other companies

› GDB improvements, non-stop, multi-process, global breakpoint,
dynamic tracepoint, core awareness, OS awareness, … with
CodeSourcery

› Eclipse GDB integration, debug analysis with CDT
community e.g. WindRiver

› Linux tracing research project with Ecole Polytechnique
(Prof. Michel Dagenais)

About me

› Linux tracing: user space tracing, GDB integration, binary
format, buffering scheme, … with EfficiOS (Mathieu
Desnoyers)

› Eclipse Linux tracing integration and analysis with Red Hat

› Organizing Linux Tracing Summit:
2008: https://ltt.polymtl.ca/tracingwiki/index.php/TracingSummit2008
2009: http://www.linuxsymposium.org/2009/view_abstract.php?content_key=108

2010: http://events.linuxfoundation.org/events/linuxcon/minisummits

GDB - UBIQUITOUS DEBUGER

› Embedded system development usually requires different targets

› Switching to a different debugger each time is a mess

› One GDB/Eclipse binary on host can support
– Multi architecture ->GDB target description <architecture> e.g. x86

– Multi operating systems ->GDB target description <osabi> e.g. linux

– Simulator/Emulator ->Same protocol, MI, Eclipse e.g. Simics

– Unit test infrastructures -> Normal host base debug

– UML models with code generation -> Normal host/target debug

– Real target -> GDB stub (e.g. gdbserver on linux)

– JTAG -> many JTAG devices work with GDB

Multi-Core-process-context

› With multi-core more things are done in parallel in many processes

› Core awareness, i.e. which threads are running on which cores

› Application debug, attach to all processes of an application, step

the application, step one core, etc.

› Follow child process created with a fork, exec, handles dynamic

loading

› Many processes can potentially execute the same code, global

breakpoint will attach to the process only when the breakpoint is hit

Special Breakpoint

› Conditional Breakpoint
– Stop only if the condition is true.
– C assert condition, i.e. breakpoint can happen when assertion is false

› Data Breakpoint or Watchpoint
– Stop whenever the value of an expression change
– Don't have to predict where this may happen
– Can be a complex expression or just a single variable

› Program event breakpoint
– Stop when a special event occurs
– throwing or catching of a C++ exception, unhandled exception
– call to exec, fork, close syscall

Altering
Execution

› A bug was found

› Test a correction without recompiling, e.g.:
– store new values into variables or memory locations
– send a signal
– restart the program at a different address
– call a function
– code patching

OS Awareness

› Some programs have a deep interaction with the
operating system

› Showing OS resources in the debugger can help e.g:
process groups, processes, threads, file descriptors, internet-
domain sockets, shared memory segments, semaphore, message
queues, loaded kernel modules, etc.

› Not completed yet

› Debugging a process by stopping its execution might cause
the program to change its behavior drastically, or perhaps
fail, even when the code itself is correct.

– Troubleshooting in the lab
– Chasing a race condition
– Debugging problems happening only under heavy load
– Investigating user interface issues

› Non-Stop allows to stop and examine one or more thread in
the debugger while other threads continue to execute freely

Non-Stop

Debug
Tracepoint

› Sometimes it is not feasible to stop the execution of even one

thread, e.g. live system

› Tracepoint collects user-specified info and continues

execution without stopping any thread

› Dynamic i.e. inserted with a jump (in process), when a jump

cannot be used, a trap between the process and the debug

stub is used

› Data collection can be conditional to a user specified expression

Debug Tracepoint

› Tracepoint actions:
–collect state trace data e.g. timestamp, and program data e.g.

variables, register, memory
–evaluate expressions , e.g. modify trace variables
–step (similar to breakpoint step) and collect data in each step

› A trace experiment can be stopped after the n'th hit

› Static tracepoint data i.e. LTTng UST can also be stored in
the debug tracepoint buffer

› Debug tracepoint are good when no static tracepoint are
available and for small quantity of data

› A tracer (e.g. LTTng) should be used to collect GB of data

Checkpoint

› Save a snapshot of a program's state, including
memory, registers, variables, etc.

› Can go back to the checkpoint, similar to a bookmark

› Cannot do things like step backwards

Reversible Debug

› Solving a bug is similar to solving a mystery, one needs to
go back in time to understand what happened.

› When debugging, you realize that you have gone too far,
and some event of interest has already happened.

› Undo the changes in machine state that have taken place
as the program was executing normally i.e. variables,
registers etc. revert to their previous values.

Reversible
Debug

› Process record and replay on Linux

› Simulators are typically faster than process record/replay

› A simple example, a variable doesn't have the right value
– add a watchpoint on the variable
– set the debug in reverse
– debugger will go back in time when the variable was last

changed

Debugger
ExtensionS

› A new debug feature can be added quickly

› Two mechanisms for extensions
– Command Files
– Python scripting

› A complete new feature can be added via python scripting

Breakpoints

Variables

Memory

RegistersExpressions

Disassembly

Multi-process

Multi-
threads

Content
hover

Enable
Reverse

Tracepoints

Eclipse Debug
integration

Eclipse Debug
integration

› Slow connection to target
– Ethernet
– JTAG
– Serial Port

› More visibility into target hw
– On-chip Peripherals
– Processor Cache
– Flash Memory
– Tracing
– Hardware Breakpoints

› Varied target hw architectures
– Multiple Cores/CPUs/DSPs
– Memory Models

› Strict Concurrency Model
• Complex caching techniques
• Exact control over when and what data is

retrieved from target
• CMD Coalescing

› Modular Debugger Implementation
• Selective re-use of a standard

implementation
• Custom services can be written to interact

with custom hardware

› Decoupled view layout from data
model

• Views layout and content easily
customized

Embedded Challenges Eclipse DEBUG Framework

Multi-Context

› Simultaneous debugging of multiple cores, processes,
threads, any objects represented in the debugger views

› Improving the workflow of multi-context debugging, e.g.
breadcrumb or one liner debug view, thousands of
processes, etc.

› Come and join the fun
http://wiki.eclipse.org/DSDP/DD/MultiContext

Eclipse IDE,
what for?

› Multi-core systems with multiple processes

› Debug multi-process, non-stop with cmd line?

› Performance analysis?

› What is your reason to use an IDE?

Context switching, bug, e-mail, new feature, interruptions, etc?
Code at the speed of thought? try Eclipse Mylyn
http://en.wikipedia.org/wiki/Task-focused_interface
http://www.tasktop.com/videos/mylyn/webcast-mylyn-3.0.html
http://tasktop.com/videos/w-jax/kersten-keynote.html

Linux Eclipse projects

C/C++ Development Tools, Linux Tools, Remote System Explorer, Sequoyah, Mylyn, EGit,

gcov, Oprofile/gprof/perf CPPunit

Linux

Linux Tools
http://www.eclipse.org/linuxtools

C/C++ Development Tool
http://www.eclipse.org/cdt/

Target Management
http://www.eclipse.org/dsdp/tm

Parallel Tools Platform
http://www.eclipse.org/ptp/

Tools for Mobile Linux / Sequoyah
http://www.eclipse.org/dsdp/tml

Mylyn, code at the speed of thought
http://www.eclipse.org/mylyn

EGit
http://www.eclipse.org/egit

Etc.
http://www.eclipse.org/projects/listofprojects.php

Eclipse Foundation, 200
members

perf

Eclipse Linux Tools
project

- Managed build for various toolchains, standard make build
- Source navigation, type hierarchy, call graph, include browser, macro definition browser, code
editor with syntax highlighting, folding and hyperlink navigation,
- Source code refactoring, static analysis
- Visual debugging tools, including memory, registers, and disassembly viewers

Tracing (LTTng)

Static Tracepoint:
› Created by designer before compilation at development time

› Static tracepoints represent wisdom of developers who are
most familiar with the code

› Helps developers to think about tracing (using only trial-error
dynamic traces is not efficient)

› The rest of the world can use them to extract a great deal of
useful information without having to know the code

Traceable Data

› Everything should be traceable

› User space

› Kernel

› Non-Maskable Interrupt (NMI)

› Thread and signal safe

› Events may not be lost

› Collect large trace data > 10GB

Low Overhead

› Low overhead is key, better tracing means more
troubleshooting in field and quicker resolution of problems

› Very efficient probes with static jump, no trap, no system call

› Almost zero performance impact with instrumentation points
disabled (kernel: static jump, userspace: uses fast boolean
evaluation)

› Enable instrumentation points have low performance impact,
i.e. a fast C function call

› Zero copy from event generation to disk write

Time

› Accurate event ordering is key to enable trace
synchronization or correlation of traces from
– different CPU, cores
– traffic exchanged between nodes
– virtual machine, etc.

› LTTng timestamp precision is typically ~1ns i.e. cycle
counter

Trace Data Storage

› Trace data is initially stored in shared memory buffers

› Tracing daemon then writes to the chosen trace-store:
– circular “flight recorder” buffer
– local disk
– remote disk
– remote stream, e.g. live monitoring

› Binary trace format highly optimized for compactness

› Self describing trace format

› Generate events with arbitrary number of arguments, variable
event sizes

Scalability

› Scalable to high core numbers

› Wait free Read-Copy-Update mechanism

› Per-CPU buffers

› Non-blocking atomic operations

› Simultaneous recording of multiple traces
– system administrator monitoring
– field engineered to troubleshoot a specific problem

› Performance is more than 5 times better than dynamic tracing (e.g.

with trap), this margin is increasing on systems with more cores

User Space Tracing

› Very low disturbance, highly scalable

› Uses user-space Read-Copy Updates (RCU) wait-free
synchronization to trace events without requiring any system
call or trap, i.e. same proven algorithms as kernel tracer

› User space independent from the kernel tracer to ease
integration, distribution, port

› Conditional tracing in userspace

Analysis

› Resource view

› Per thread execution state (control flow view)

› Event rate histogram

› Detailed event list, filtering

› View synchronization

› IRQ latency

›

Analysis

› Trace synchronization
– Time correction
– Multi-core
– Multi-level
– Multi-node, distributed

› Dependency analysis, delay analyzer
– Dependencies among processes
– How total elapsed time is divided into main components

› Pattern matching
– Security
– Performance
– Testing lock acquisitions

› Correlation
– Other format
– Text base logs
– Multi-level

Multi-Core
Troubleshooting

› Major software redesign is normally required to benefit from
multi-core architectures

› Software development industry and individual developers are
facing problems whose resolution requires to understand the
interaction between all layers, including third party products e.g.

Hypervisor
Operating system
Virtual machines
System libraries
Applications
Operation and maintenance
Many Languages: C/C++, Java, Erlang

› A typical system these days:
– Linux on a few cores
– Low-level RTOS on another core
– DSP's, etc.

› Developed in different context,
– In-house development
– Consultant
– Reusable components
– Third party products

› Understanding what is happening on the system requires
compatible tools, i.e. de facto standard

Complex systems

› Open source contributions are growing exponentially, contributions
are sometimes incompatible or result in duplicated work:

–Many forks of GDB
–competing projects have emerged, e.g. frysk, EDC
–Linux trace initiatives e.g. LTTng, ftrace, perf, utrace, SystemTap
–Very hard to plan cross project features

› Let's take this to the next level
–not only contribute the parts needed for one company, plan together
–avoid incompatible data, inconsistent work, and duplicated efforts
–e.g. Executable and Linkable Format (ELF), DWARF debug format
–create an industry de-facto standard for tools, reference implementation
–Show it’s easy to add features to tools
–Budget cycle! Ecosystem of tool improvements, support
–Linux foundation tool work group?

Linux Tool Work
Group?

We can do better than printf

