
LTSI	Project	update	
Long	Term	Support	Ini0a0ve	

Tsugikazu	SHIBATA,	NEC	
23,	Oct.	2017	

Embedded	Linux	Conference	Europe	
Hilton	Prague	

agenda	

•  Kernel	staJsJcs	and	process	
•  History	of	LTSI	and	learned	in	6	years	
•  Further	steps	for	maintaining	kernel	long	term	

Who	am	I	

•  Tsugikazu	SHIBATA,	NEC	
•  Founder	and	project	lead	of	LTSI	
•  LTS/LTSI	Advocate	

•  Board	member	of	Linux	FoundaJon	
•  Involved	with	Linux	community	since	2.4	

Linux	=	Open	Source	project	

•  Linux	is	one	of	the	most	successful	Open	
Source	project	

•  ConJnue	growing	in	26	years	;	expanding		
adopJon	for	new	area;		
–  IT	enterprise,	Cloud,	Network,	Smart	Phone,	
RoboJcs,	Embedded,	IoT	and	many	others	

•  Developing	and	delivering	under	GPLv2	

Developed	by	the	community	

•  ParJcipaJng	~1700	developer,	~230	
companies	every	releases	

•  Growing	yearly	1.5Mlines	of	code,	4000	files	
increased		

•  26	Years	of	history		
•  Maintainers	have	great	skill	to	manage	the	
subsystem	and	professional	knowledge	of	its	
area	of	technologies	

Status	of	Latest	Linux	Kernel 	

•  Latest	released	Kernel	:	4.13	
– Released:	Sep	3rd	,	2017	
– Lines	of	code	:	24,767,008				(+596,148)		
– Files	:	60,543			(+737)			
– Developed	period:	63		days	from	4.12	

•  Current	Stable	Kernel:	4.13.9	
•  Current	development	kernel:	4.14-rc5	

Kernel	release	cycle	
•  Release	cycle:	65	~	70	days,	5~6	releases/year	

Version	 Release	 Rel.	span	

4.9	 2016-12-11	 70	

4.10	 2017-02-09	 60	

4.11	 2017-04-30	 80	

4.12	 2017-07-02	 63	

4.13	 2017-09-03	 63	

4.14	 2017-??	

Version	 Release	 Rel.	span	

3.19	 2015-2-9	 64	
4.0	 2015-4-12	 62	
4.1	 2015-6-22	 71	

4.2	 2015-8-30	 69	

4.3	 2015-11-2	 64	

4.4	 2016-1-10	 68	

4.5	 2016-3-14	 64	

4.6	 2016-5-15	 63	

4.7	 2016-7-24	 70	

4.8	 2016-10-2	 70	

6	

5 5

Linux	development	policy	
•  Upstream	is	only	the	place	to	accept	the	patches	

– Reviewed	by	skilled	maintainer	
– Tested	with	other	proposals	to	confirm	no	conflicts	
– Well	coordinated	development	process	for	over	
thousands	of	developers	

(Bug/Security)	

Upstream	

New Features 	 Fixes	

Linux	Development	process	
•  Just	aier	the	release	of	4.n,	two	weeks	of	merge	
window	will	be	opened	for	proposal	of	new	features	

•  Aier	2	weeks	of	merge	window,	-rc1	will	be	released	
and	the	stabilizaJon	will	be	started	

•  4.n+1	will	be	released	when	it	becomes	reasonably	
stable	by	some	of	-rcX	released		

4.n 4.n＋１-rc1 -rc2 -rc3 -rc4 -rcX

Merge
Window
(2weeks)

Stabilization

Linux	Source	Code	Growth	

•  Increasing	0.3ML/Version,	1.5ML/year	

0	

5,000,000	

10,000,000	

15,000,000	

20,000,000	

25,000,000	

30,000,000	

4.0	 4.1	 4.2	 4.3	 4.4	 4.5	 4.6	 4.7	 4.8	 4.9	 4.10	 4.11	4..12	4.13	

Linux	source	code	growth	

Rapid	Release	cycle	of	Linux	

•  Yearly	more	than	5	Jmes	of	chance	to	marge	
the	code	into	upstream.		
– Other	project	maybe	6	month	release	cycle	that	is	
2	Jmes/year	

•  Lot’s	of	chance	to	merge	new	code	into	
upstream	

•  So	many	choice	to	use	for	newer	products	and	
need	deeper	knowledge	to	pick	right	version	

Stable	kernel	release	

•  Recommended	branch	for	users	who	want	the	most	recent	stable	
kernel	

•  3	part	version	like	4.n.m	
•  Contain	small	and	criJcal	fixes	for	security	problems	or	significant	
regressions	discovered	in	a	latest	development	version	

•  Becomes	“End	Of	Life”	when	next	stable	kernel	were	released	

4.n	 4.n+1	 4.n+2	

4.n.1	 4.n.2	

4.N+1 Development	

EOL	

EOL	

Status	of	Latest	Linux	Kernel	Again		

•  Latest	released	Kernel	:	4.13	
•  Current	Stable	Kernel	:	4.13.7	
•  Current	development	kernel	:	4.14-rc5	

4.13	

4.13.1	

4.14 Development	
4.14-rc5	

4.13.7	

LTS:	Long	Term	Stable	Kernel	

•  Extended	maintenance	period	for	stable	kernel	
•  Kernel	tree	conJnue	to	back	port	bug	and	Security	
fixes	for	more	long	term	

•  Pick	one	version	per	year	and	maintain	2	years	

LTS	

Stable Release	

Development Release	

Why	LTS?	
•  Only	the	tree	get	fixes	from	the	community		
•  In	the	real	use	case,	tested/confirmed	kernel	
is	important,	less	important	for	new	features	

•  Fixes	will	be	released	#	of	Jmes	and	should	be	
applied	frequently,	Security/Bug	fixes	are	
being	more	important	

•  Bugs	found	in	LTS	should	be	reported	and	
fixed	in	upstream	

Current	LTS	versions	
Version	 Maintainer	 Released	 Projected	EOL	 Years	

4.9	 Greg	Kroah-Hartman	 2016-12-11	 Jan,	2019	 2	

4.4	 Greg	Kroah-Hartman	 2016-01-10	 Feb,	2022	 6	

4.1	 Sasha	Levin	 2015-06-21	 May,	2018	 3	

3.16	 Ben	Hutchings	 2014-08-03	 Apr,	2020	 6	

3.10	 Willy	Tarreau	 2013-06-30	 Oct,	2017	 4	

3.2	 Ben	Hutchings	 2012-01-04	 May,	2018	 6	

https://www.kernel.org/category/releases.html	

LTS	includes	large	number	of	fixes	
•  600	–	700	fixes	included	in	a	Stable	release	
•  LTS	include	several	thousands	of	fixes	

Version	
FROM-TO	

#Com
mits	

3.2	 3.2.94	 8105	

3.3	 3.3.8	 698	

3.4	 3.4.113	 5929	

3.5	 3.5.7	 816	

3.6	 3.6.11	 757	

3.7	 3.7.10	 718	

3.8	 3.8.13	 996	

3.9	 3.9.11	 746	

3.10	 3.10.107	 6564	

3.11	 3.11.10	 677	

Version	
FROM-TO	

#com
mits	

3.12	 3.12.70	 7342	

3.13	 3.13.11	 903	

3.14	 3.14.79	 4977	

3.15	 3.15.10	 703		

3.16	 3.16.49	 7278	

3.17	 3.17.8	 884	

3.18	 3.18.75	 5281	

3.19	 3.19.8	 873	

4.0	 4.0.9	 757	

4.1	 4.1.44	 4629	

　As of 2017/10/15	

Version	
FROM-TO	

#com
mits	

4.2	 4.2.8	 903	

4.3	 4.3.6	 618	

4.4	 4.4.92	 5619	

4.5	 4.5.7	 973	

4.6	 4.6.7	 705	

4.7	 4.7.10	 912	

4.8	 4.8.17	 1102	

4.9	 4.9.56	 4838	

4.10	 4.10.17	 1136	

4.11	 4.11.12	 984	

Version	
FROM-TO	

#com
mits	

4.12	 4.12.14	 837	

4.13	 4.13.7	 509	

LTS
EOLed LTS
Stable	

#	of	Yearly	fixes	in	LTS	

Version	 Maintainer	 Released	 Years	
maintained	

Total	
Commits	

Fixes/year	

4.9	 Greg	Kroah-Hartman	 2016-12-11	 0.8　 	 4038	 4038	
4.4	 Greg	Kroah-Hartman	 2016-01-10	 1.8		 5619	 3176.0 	

4.1	 Sasha	Levin	 2015-06-21	 2.3		 4629	 1989.3 	

3.16	 Ben	Hutchings	 2014-08-03	 3.2		 7278	 2266.2 	

3.10	 Willy	Tarreau	 2013-06-30	 4.3		 6564	 1523.8 	

3.2	 Ben	Hutchings	 2012-01-04	 5.8		 8105	 1397.5 	

　As of 2017/10/15	

•  LTS	include	1	~	3	thousands	of	fixes	every	year	
•  ConJnue	to	apply	these	patches	are	very	important	for	the	

security	viewpoint		

LTSI	Status	

What	is	LTSI	
•  Open	Source	community	to	create	and	
maintain	LTSI	kernel	tree	for	long	term	
– Based	on	LTS,	All	the	LTS	patches	are	applicable	
– Add	another	chance	to	include	further	patches	on	
top	of	LTS,	That	is	LTSI	tree	

–  Industry	party	to	share	best	pracJce	and	help	
companies	to	use	Linux	for	long	term	

LTSI	includes	LTS	
LTSI	
p Be	able	to	add	required	features	on	top	of	LTS	
p Share	status,	info,	problem	among	industry	people	
p Huge	tesJng	by	contributors	
p Auto	test	frame-work	

p Provide	help	developer	for	upstream	
LTS	
p Release	1	version	/	year,	Maintain	2	years	

p Frequently	and	large	number	of	bug	/security	fixes	

History	of	LTSI	
•  Established	2011,	in	ELCE	Prague		

– 6	yeas	now!	
– Started	for	stable	Kernel	for	Android	

•  Every	Android	release	was	used	different	kernel		
•  Android	3.0	Ice	cream	Sandwich	was	used	Linux	3.0		
•  Number	of	different	tree	need	to	be	integrated	

–  Discussed	about	the	shape	of	LTS		
•  2	Years	term	and	release	every	year	
•  Maintaining	2	LTS	kernels	is	reasonable	for	both	companies	and	
maintainer		

History	of	LTSI	

•  Maintained	by	Greg	Kroah-Hartman	,	Fellow	of	Linux	
FoundaJon	as	same	as	LTS	

•  Released	yearly	basis;	3.0,	3.4,	3.10,	3.14,	4.1,	4.9	
•  Integrated	by	Yocto	Project	(2012,	May)	

–  Yocto	is	about	60%	or	more	share	of	Embedded	products	

•  Have	had	workshop/session	to	share	informaJon	
and	discuss	issue	among	industry		

•  Have	many	of	use	cases	:	AGL	…	

Learned	in	6	Years	

The	value	of	LTS/LTSI	were	:	
1.  LTS	and	LTSI	is	only	a	choice	for	the	products	
2.  Upstream	First	policy	
3.  Security	and	Bug	fixes	are	being	more	

important	in	Embedded	space	

1.	LTS	and	LTSI	is	only	a	choice	

•  For	Long-term	usage,	LTS/LTSI	is	just	fit	
•  LTS	provides	2-3K	of	patches	in	a	year	

–  If	the	work	should	be	done	by	a	company,	the	
company	needs	specific	resources	

•  Now,	all	the	Android	device	using	LTS	
– LTS	is	default	choice	even	for	the	other	use	case	

•  There	is	more	longer	term	requirements	
– CIP,	AGL	and	Android	

2.	Upstream	First	policy	

•  Changing	kernel	for	the	“product	first”	makes		problem	
for	long	term	use	
–  Large	number	of	fixes	may	NOT	applicable	in	the	future	
–  Huge	discussion	happened	before	kernel	summit	2016	

•  That’s	why	companies’	developers	need	parJcipate	
Linux	kernel	community	

•  IniJal	hurdle	may	high	but	important	for	long	term	use		
•  LTSI	is	keeping	upstream	first	policy	

3.	Security	/	Bug	fixes	are	being	more	important	

•  Now	fixing	security	problem	is	mandatory	
requirement	

•  To	apply	community	provided	security	fixes,	base	
code	should	be	same	as	upstream.	Otherwise	
Immediate	patch	release	will	not	possible	
–  In-house	patches	must	as	small	as	possible	

Further	steps	for	maintaining	
kernel	long	term	

Case	of	Project	Treble	for	Android	
•  Isolate	Android	OS	and	hardware	specific	code	

– Under	the	Vendor	Specific	Binder	(/dev/vndbinder),	
all	the	vendor	specific	kernel	code	will	run	

– VTS/CTS	can	test	its	interface	
– By	this	change,	silicon	specific	patches	and	LTS	
patches	can	be	applied	separately	

– That	makes	Android	soiware	does	NOT	depend	on	
Hardware	

	

Live	Patching	

•  Feature	for	live	patching	the	kernel	code	was	
merged	in	Linux	4.0	
– Result	of	kgrai	of	SUSE	and	kpatch	of	RedHat	
– Most	CVE	can	be	safely	to	apply	
– X86	is	primary	architecture	

•  By	using	Live	patching,	some	super	important	
patch	can	be	applied	without	down	Jme	

Kernel	update	mechanism	
•  CoreOS	and	ChromeOS	have	feature	to	update	
kernel.		
– There	is	2	different	parJJon.	A	is	current	working	
one	and	during	working	on	A,	new	kernel	will	be	
down	loaded	into	B	and	then	boot	from	B.	

– Google	is	providing	basic	code	called	“Omaha”	
– Different	commercial	implementaJon	is	available	
– This	will	easier	to	upgrade	kernel	and	also	easy	to	
roll	back	to	previous	kernel	

Container	based	OS	

•  For	Embedded	space,	Container	will	be	able	to	
used	as	packaging	technology	
– Be	able	to	ignore	problem	of	Libraries	and	
Language	processor	version	

•  Building	Container	OS	is	different		
– OS	is	just	providing	service	for	container	
– Basic	OS	should		include	minimum	packages	
– Apps	supports	should	be	in	Container		

LTSI	2017	Development	plan	

11	 12	 3	2	1	 4	 8	5	 6	 7	 10	9	 11	 12	 2	1	10	

4.9	 4.10	 4.11	 4.12	 4.13	 4.14	 4.15	

4.9 LTS	

VP	MW	

AMM
2/8-

ELC
2/20-	

OSSJP
5/31-	

OSSNA
9/11-	

ELCE/
KernelSummit
10/23-	

Announcements	

6 month	

Events	

Announce	 Merge	Window	
Open	

Merge	window	
Close	

Release	

2/8	or	20	 End	of	June	 End	of	July	 End	of	August	

2016	 2017	 2018	

12/11	

LTSI 4.9
Release	

Yocto2.4	
Electric Eel	

LTSI	2018	Development	plan	

11	 12	 3	2	1	 4	 8	5	 6	 7	 10	9	 11	 12	 2	1	10	

4.14	 4.15	 4.16	 4.17	 4.18	 4.19	

4. 14 LTS	

VP	MW	

Announcements	

6 month	

2017	 2018	 2018	

LTSI 4.14
Release	

Yocto2.
X	 FF	

You will be able to have chance to add new
patches on top of 4.14 LTS in Merge Window
next May 	

Conclusion	
•  LTSI	was	started	to	fill	the	gap	between	community	
and	industry	but	sJll	there	is	the	gap	
– We	will	conJnue	our	acJvity	to	discuss	both	side	to	beuer	
align	each	other	

•  Upstream	first	policy	is	important	for	Open	Source	
•  Why	don’t	you	join	LTSI?	

–  By	joining	LTSI,	you	will	be	able	to	share	best	pracJce		
–  Be	able	to	get	informaJon	for	stable	kernel	

36

THANK	YOU	

You	can	parbcipate	LTSI	
•  Follow	on	Twiuer	account:			

@LinuxLTSI	
•  Web:	

hup://ltsi.linuxfoundaJon.org	

•  Mailing	list:	
hups://lists.linuxfoundaJon.org/mailman/lisJnfo/ltsi-dev	

•  Git	tree	:		
			hup://git.linuxfoundaJon.org/?p=ltsi-
ernel.git;a=summary	
	

37

