Strategies for Migrating lt

Uniprocessor Code to
Multi-Core F

Embracing Multi-Core
Processors

Mike Anderson

Chief Scientist

The PTR Group, Inc.

mailto: mike@theptrgroup.com
http:/ /www.theptrgroup.com

What We’ll Talk About

#Motivations for multi-core migration
$#Linux threading model

#Logical vs. temporal correctness
#Rethinking your code architecture
#Strategies for avoiding race conditions

What we won’t be Addressing

#The focus of this discussion is at
the process/thread level
#We won’t be addressing:
» Instruction-level parallelism (ILP)
» OpenMP
» Out-of-order, super-scalar processor
issues and memory barriers
» Simultaneous Multi-Threading (SMT)
» SIMD instruction sets
#Each of these are worthy topics on
their own, but | only have so much
time...

2010, The PTR Group, . ==

Why Multi-Core?

#The motivations for multi-core
seem clear at this point in time
» Lower thermal envelope
» Lower power consumption

» Ability to scale our code across
multiple execution units

#However, there are “gotchas” as
well
» Each core is clocked slower

» Cache misses and process migration
issues can slow code execution

LS50 WiCoreioration4 Copyige 2010, The 1R G, . M_ﬂﬁ

=g

Single vs. Multi-Threaded Applications

#Much of the existing code today is single
threaded
» Only one execution path
#Single-threaded applications cannot utilize the
additional cores
» Lower frequencies of the cores means lower
performance of the single-threaded application
- Intel’s “TurboBoost” is addressing this
#Multi-threaded code has multiple, simultaneous
execution paths
» Multi-threaded code often relies on priorities to
ensure proper execution
- Highest priority always wins in the scheduler

fcsio

2010, The PTR Group, . ==

Scalability of Algorithms

$#If an algorithm is perfectly scalable then
adding N processors increases the speed
N times
#This is represented in Amdahl’s Law:
Sp=T/T,
where S is the speed up, T is the time to execute
an algorithm and p is the number of processors
#Unfortunately, most code is rarely
perfectly scalable due to IPCs,
synchronization primitives and bus
contention

aon-6 Copigh 2010 o P G, M_ﬂﬁ

ELC-SFO-MaiCore

The Linux Threading Model

#Linux supports a number of -
different threading models 3 s _
» GNU Pth, NPTL, SolarisThreads and é % |
&2

more
#Most popular is NPTL sore sy
» POSIX-based, 1-1 scheduling
$-Each thread is independently
schedulable

» Blocking in one thread had no impact
on other threads

#All share the address space of their
parent process
» l.e., memory is “flat” between threads

ELC-SFO-MukiCorairaton-7 Copyright 2010, The FTR Group, . ==

The Scheduler

#The scheduler runs on each core

» Selects the highest priority thread ready to
run at that time and dispatches it

#E.g.,. on a UP, priority 50 thread will run
to completion before priority O thread
» No problems with contention
#0n a MP, priority 50 thread will run on
one core while priority O thread runs
simultaneously on the other
» Race conditions will manifest themselves

LS50 WCoreior o Copyie 2010, The 1R G, . M_ﬂﬁ

What is a Race Condition?

#When a program does the
right set of steps, it’s
considered to be logically
correct

#When it does the right thing premreere
at the right time, it’s
temporally correct

#Race conditions are
violations of temporal
correctness

» Also known as “live-lock”

ELC-SFO-MukiCorairaton-9 Copyright 2010, The FTR Group, . ==

Where is the Contention?

#Most race conditions are caused due
to contention over data structures or
resources

» Multiple threads accessing the same data
at the same time from multiple cores

#Problem doesn’t manifest on a UP

» Priority preemption prevents it

#Implies that there is a critical region
of code that must have exclusive
access for some period of time

» Identifying the critical region takes
practice

C510 WtiCoragraion-10 Coprig 2010, T 1R . M_ﬂﬁ

Detecting Race Conditions

How could we go about detecting
race conditions?
» Static detection performed at compile
time

- Static detection is an NP-hard problem
- Like the traveling salesman'’s problem
» Heuristic detection techniques
+ Heuristic techniques can only detect
potential race conditions
» Dynamic detection at run time
- We need to examine every memory access
- We can only detect it after it happens
3 All this being said, there are o b nrcpsode
companies that sell automated tools
that claim race-detection capabilities
» Klocwork Insight™ and Coverity Prevent™
among others
» YMMV

ELC-SFO-MutiCoraMiraton-1 1 Comrght 2010, The PR Group, I ==

Techniques for Avoiding Races #1

3 Since most race conditions arise
over contention for global data,
simply eliminate the global data

3 The stacks for each thread are
unique

» Store the data on the local stack

3 Linux supports the use of thread
local storage (TLS)

» The pthread key_create(..) and
pthread_getspecific(.) calls allow for
storage known only to the local thread

3 Unfortunately, these approaches
may require that algorithms be
significantly re-written

510 WtiCorapraion 12 Conpign 2010, The kG, . &ﬂﬁ

Techniques for Avoiding Races #2

#Contention can arise from threads on
separate cores
» Lock all of the threads to a single core
- This reduces to the UP solution
» Known as the “containment” approach
#This requires the use of processor affinity
assignments

» Also requires the use of priorities to ensure
proper operation

Copyright 2010, The PR Gr

/T

Problems with Containment

3tFirst, locking all threads to a
single processor core defeats
the scalability of MC systems

» The reason you went to MC in the
first place

3#The requirement to use
priorities is subtle

» Time slicing can force preemption
leaving the resource in an
unknown state

» Not a problem in preemptive,
priority-based O/Ses like many
RTOS solutions

» Failure mode may not manifest
itself frequently

[re—— Conpign 2010, The kG, . M_ﬂﬁ

A Brief Aside: Processor Affinity

#In Linux, the O(1) and CFS schedulers
actually try to keep threads on the same
processor when possible

» Called “soft affinity”
» Can conflict with load-balancing goals

#Even with soft affinity, threads can still
migrate

#We can see the current core assignment
for any thread in the ps command

» Also visible in the /proc file system entry for
the PID

Copight 2010, The PTR Graup, . ==

Setting Hard Affinity

$#In order for us to prevent thread
migration, we must use hard affinity
settings
» We need to make sure that we have the
schedutils package installed
#This allows us to use the taskset
command to control a CPU migration
mask for the PID
» taskset -p [mask] pid
#We have a “1” bit in every allowed CPU
core

Coprig 2010, T 1R . M_ﬂﬁ

Setting Hard Affinity in Code

#We can also set the affinity mask
in our code -
»
» The sched_setaffinity(..) call allows ™ ‘
us to set the processor the mask on >
a process basis [—
- Does not include any threads

3 N

» pthread_setaffinity_np(.) allows us
to set the processor mask for
pthreads

» There are sched_getaffinity(.) and
pthread_getaffinity_np(.) calls to
retrieve the mask

#These calls also have an
equivalent for kernel threads

ELC-SFO-MukiCorahiraton-17 Copight 2010, The PTR Graup, . ==

Example Code

cpu_set_t cmask;
unsigned long len = sizeof (cmask);
pid_t p = 0;

CPU_ZERO (scmask) ;
CPU_SET(0, scmask);

if (!sched setaffinity(0, len, &cmask)) {
perror ("Could not set cpu affinity for current process.\n");

}

3 This would set the affinity for the calling process to core
0

3 The mask allows for multiple CPUs to be set in the mask
» E.g., a group of user-code cores and a group of interrupt cores

[— Coprig 2010, T 1R . M_ﬂﬁ

What About Encapsulation?

#You could place the
resource in a class with
access methods

» Unless there is an kernel-
enforced synchronization
primitive involved, this is no
better than containment

- Time slicing can still leave
resource in an unknown state

#You need to wrap access to
the resource in a mutual
exclusion mechanism

fcsio

Copyight 2010, The PTR G

/T

Mutual Exclusion Mechanisms #1

#The most common mutual exclusion technique
is to use mutual exclusion (mutex) semaphores
» Each code segment must acquire the semaphore
before access
- Release the semaphore after use
#Linux mutexes, via pthread calls, are based on
the Linux fast, user-space mutex (FUTEX)
mechanism
» Adaptive in nature
- Doesn’t immediately sleep
» If no contention, does not require kernel intervention
» Priority inversion support
» Has concept of ownership

ELC-SFO-MaiCore

Coprig 2010, T 1R . M_ﬂﬁ

Priority Inversion

#A major problem for Linux and real-time
work was something called priority
inversion

» Fixed with FUTEX mechanism

Lowinests Lawgoas
ngvspi backlookg
oo

fcsio

/T

Characteristics of Mutexes

#The use of a mutex semaphore
forces serialization around the
resource

» Breaks up the parallel nature of MC %

#Blocking on semaphore will cause

context switches
» + Allows something else to run
» - Potential cache flushes

» - Excessive serialization reduces to
sub-UP performance

ELC-SFO-MaiCore

Coprig 2010, T 1R . M_ﬂﬁ

Mutual Exclusion Mechanisms #2

#The Pthreads API also supports spin locks

» A spin lock is a tight loop that checks for
availability of the lock

#Burns CPU time
#Used in cases where context switch is
undesirable

» You expect that the resource will become
available “soon”

#Might produce better performance on
certain MC applications

Copyight 2010, The PTR Group, nc. ==

Mutual Exclusion Mechanisms #3

#Another technique is to use message
queues to pass data between threads
» Decouples the production rate from the
consumption rate
- Threads become more “asynchronous”
#Unfortunately, requires multiple copies
» One into the queue, one out for each
direction
#Can pass pointers to data via the message
queue to reduce copy overhead

Coprig 2010, T 1R . M_ﬂﬁ

Beware of Binary Semaphores

#You might be tempted to use a
traditional binary semaphore
» It seems like it might work
#But, binary semaphores are
subject to priority inversion
#Also, binary semaphores do not
have a concept of ownership
» Recursive calls to the sem wait ()
function will cause deadlock
#Binary semaphores are designed
for synchronization rather than
mutual exclusion

£LCSF0 Mt

Copyright 2010, The PR Group, I

/T

Threading Design Guidelines

#When developing applications, try
to identify those activities that can
run in parallel

#Identify data flow through the
application

» Determine what data must be shared
between activities

#Identify the correct sequencing of
the activities

» Temporal correctness

3t Identify relative importance of

activities
» These may need priority adjustments

C510 WiiCorapraion 26 Conpign 2010, The kG, . &ﬂﬁ

Thread Design Guidelines #2

+#Don’t assume that priorities will preclude race
conditions
> Rem‘ember, lower priority thread can run on other
core!
$#When designing your threads, keep them as
separate as possible
» Don’t share data unless necessary
» Use synchronization primitives when needed
- Mutexes, spin locks, message queues, etc.
+#Try to keep data used by threads on separate
cache lines
» Create a cache_aligned_malloc/cache_aligned_free
to make sure data’is in separate cache lines to avoid
false sharing
- Avoid ping-ponging between processor caches

fcsio Copyight 2010, The PTR G

/T

Summary

4¢-Effective use of MC processors will
require some thought on your part
» You might need significant re-architecting to
make your application MC aware
4$Focus on data flow and identify critical
regions of code
» Try to keep the critical regions as short as
possible to avoid excessive serialization
4$Address processor affinity if you need to
optimize the code to the next level

ELC-SFO-MaiCore

28 Coprig 2010, T 1R . M_ﬂﬁ

