
Introduction Motivations Proposal Conclusions

Constrained Power Management
an holistic approach to power management

Patrick Bellasi
PhD Student

Dipartimento di Elettronica e Informazione
Politecnico di Milano, Italy

ELC-E - October, 15-16 2009



Introduction Motivations Proposal Conclusions

Focusing the presentation’s topic

Outline

• Highlight some issues of current Linux kernel PM support

• Advance a proposal to tackle these problems
◦ not a finale solution
◦ try to focus attention on the topic
◦ trigger a discussion to improve this kind of support



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

Multiple disjoint policies

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree

Multiple disjoint policies

LCD ACodec WiFi

BUSA BUSB

BUSC

SYS

BUS

MEM

CPU

V/I

Framework

Clk

Framework

S/R

Framework

CPUfreq CPUidle

AP NegotiationBacklight

PASR

Simple representation of a complex system

How can we achieve system-wide optimization?



Introduction Motivations Proposal Conclusions

Multiple sub-system specific policies

Multiple-Policy Approach: Potential Issues

• Multiple decision points
◦ difficult inter-dependencies tracking
◦ risk of conflicting decisions

• Only indirect info about applications QoS requirements
◦ user-space know the requirements, kernel should support them
◦ application requirements should drive kernel frameworks tuning

• No proper aggregation on applications requirements
◦ only some frameworks provide it (e.g V/I fw, “new” clock fw)
◦ risk of code duplication

• No feed-back on resources availability
◦ applications could require resources from multiple devices
◦ behavior depends on effective availability of all the required resources

The composition of almost independent optimization policies cannot
grant a system-wide optimization



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

Drivers
Local

policies

Distributed control model



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

resource availability

inter−dependency

Coordination

Entity

Drivers
Local

policies

Distributed control model



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

Global

policy

resource availability

inter−dependency

Coordination

Entity

Drivers
Local

policies

Distributed control model



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

QoS

requirements

User−space

user−space

Global

policy

resource availability

inter−dependency

Coordination

Entity

Drivers
Local

policies

Distributed control model



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

tuning

Constraint

Aggregation

QoS

requirements

User−space

user−space

Global

policy

resource availability

inter−dependency

Coordination

Entity

Drivers
Local

policies

Distributed control model



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

The PM QoS interface

Linux kernel infrastructure to implement a coordination mechanism
among drivers (capabilities) and application (QoS requirements)

• Developed by Intel for iwl4965 WiFi driver on x86
◦ since Linux 2.6.25 (linux/pm qos params.h)

• Defines a (limited) set of “abstract” QoS parameters
◦ i.e. latencies, timeouts and throughput
◦ maintains a list of QoS requests and aggregate requirements

• restrictive aggregation only, i.e. Min/Max
• this aggregation generates a constraint

◦ provides notification chain for constraint update

• drivers subscribe to parameters of interests
e.g. CPUidle is constrained by ’system latency’

◦ Drivers’ local policies should grant required constraints

• no failures handling on notify chain calls



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2

20+18 Mb/s

38Mb/s

pm_qos_update_requirement(bw,18)

max(18,20)



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2

20+18 Mb/s

38Mb/s

pm_qos_update_requirement(bw,18)

max(18,20)

32Mb/s

38+32 Mb/s

70Mb/s

20+18 Mb/s

38Mb/s

max(20,32)

pm_qos_update_requirement(bw,32)



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2

20+18 Mb/s

38Mb/s

pm_qos_update_requirement(bw,18)

max(18,20)

32Mb/s

38+32 Mb/s

70Mb/s

20+18 Mb/s

38Mb/s

max(20,32)

pm_qos_update_requirement(bw,32)

current

E1 QoS

Constraint

value

pm_qos

E2



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2

20+18 Mb/s

38Mb/s

pm_qos_update_requirement(bw,18)

max(18,20)

32Mb/s

38+32 Mb/s

70Mb/s

20+18 Mb/s

38Mb/s

max(20,32)

pm_qos_update_requirement(bw,32)

E1 QoS

Constraint

value

pm_qos

E2

pm_qos_update_requirement

notification



Introduction Motivations Proposal Conclusions

Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2

20+18 Mb/s

38Mb/s

pm_qos_update_requirement(bw,18)

max(18,20)

32Mb/s

38+32 Mb/s

70Mb/s

20+18 Mb/s

38Mb/s

max(20,32)

pm_qos_update_requirement(bw,32)

E1 QoS

Constraint

value

E2

pm_qos

pm_qos_update_requirement

notification

"grant"

unuseful restrictive setting granted value



Introduction Motivations Proposal Conclusions

Where are we going?

Our Goals

• Define a formal model for system-wide performance vs power
control
◦ based on constraints-based approach
◦ drivers could collaborate to find the optimal system-wide

configuration

with respect to all QoS requirements

◦ support multi-objective optimizations

• Implementation based on latest Linux kernel
◦ overcoming current QoSPM limitations

• Validate the model and the implementation on real hardware
◦ STM’s Nomadik platform
◦ evaluate overheads and performances



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

Device

Local

Control

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy

Key: information flowabstractiondevice/toolpiece of information



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

PSM/ASMDWR DWRAbstraction Layer

Device

Local

Control

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy

Key: information flowabstractiondevice/toolpiece of information



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

FSCModelling Layer

PSM/ASMDWR DWRAbstraction Layer

Device

Local

Control

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy

Key: information flowabstractiondevice/toolpiece of information



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

global

policy
Optimization Layer

FSCModelling Layer

PSM/ASMDWR DWRAbstraction Layer

Device

Local

Control

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy

Key: information flowabstractiondevice/toolpiece of information



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

QoS Requirements

Execution

Context Applications

Libraries Buses

global

policy
Optimization Layer

FSCModelling Layer

PSM/ASMDWR DWRAbstraction Layer

Device

Local

Control

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy

Key: information flowabstractiondevice/toolpiece of information



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies

Framework

Distributed

Agreement

Manager

QoS Requirements

Execution

Context Applications

Libraries Buses

global

policy
Optimization Layer

FSCModelling Layer

PSM/ASMDWR DWRAbstraction Layer

Device

Local

Control

Key: information flowabstractiondevice/toolpiece of information

Platform Code

Device

Driver

local

policy

Device

Driver

local

policy



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Abstraction Layer

System-Wide Metric (SWM)

A parameter describing the behaviors of a running system and used
to track resources availability

• QoS requirements: are expressed as validity ranges on SWM
mainly upper/lower bounds

• Different abstraction levels
◦ Abstract System-wide Metric (ASM), platform independent

exposed to user-land
e.g. ambient light/noise, power source, specific application requirements

◦ Platform System-wide Metric (PSM), platform dependent
private to platform code and platform drivers
e.g. bus bandwidth, devices’ latency

• Allow to track QoS inter-dependencies
◦ platform drivers and code can translate ASM’s requirements into

PSM’s constraints

Code Example



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Abstraction Layer

Device Working Region (DWR)

The mapping on SWMs’ range of
a device operating mode

• A device could have different
working modes
◦ different QoS => different

SWM range

• Defined by the device driver

• Implicitly allows devices
dependencies tracking

• Graphic representation

π21

π24

π25

π26

π23

π22

π12π11 π13 π14

d3

working

regions

C31

C32

C33

p1

p2

A device with 3 DWR (cdm) mapping 2 SWM (pi )

Code Example



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Modelling Layer

Feasible System-wide Configurations (FSC)

The intersection of a least a DWR
for each device

• QoS requirements within a FSC
◦ all devices can support the

required QoS level
◦ no conflicts

• identify all and only the feasible
system’s working modes
◦ all the possible solutions for the

PM optimization problem
◦ define an abstract model for

system-wide optimizations

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C31

C32

C33

p1

p2

FSC 3

FSC 2

FSC 1

The 3 FSCs existing on this system



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

A Formal Optimization Framework

• Using Linear Programming (LP)
◦ well known mathematical multi-objective optimization framework

• Two-fold goal
◦ formally justify the proposal

• through the equivalence with a well known exact method for optimal
solution search

◦ guide the design of an efficient implementation
• we don’t want to solve an LP problem
• identify possible simplifications
• exploit problem specificities

Use LP formulation to identify a solution-equivalent and efficient
optimization strategy

Go to Formulation



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C31

C32

C33

p1

p2



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C31

C32

C33

p1

p2

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C32

C33

C31

π1M

π2M

π1c

v1

v3

v3

p1

p2

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C32

C33

C31

π1M

π2M

π1c

v1

v3

v3

p1

p2

Convex−Hall

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C12C11

d2

C22

C21

C23

d3

working

regions

C32

C33

C31

π1M

π2M

π1c

v1

v3

v3

p1

p2

Convex−Hall
og

o2

o1

O

O’

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C12C11

d2

C22

C21

C23

d3

working

regions

C32

C33

C31

π1M

π2M

π1c

v1

v3

v3

p1

p2

Convex−Hall
og

o2

o1

O

O’

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2

d1

C12C11

d2

C22

C21

C23

d3

working

regions

C32

C33

C31

π1M

π2M

π1c

v1

v3

v3

p1

p2

Convex−Hall
og

o2

o1

O

O’

FSC 3

FSC 2

FSC 1



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

A Real Optimization Framework

• Translate the formal (LP) model into an efficient implementation

• Exploit tree different time domains
◦ boot time => FSC Identification (FI)
◦ policy update time => FSC Ordering (FO)
◦ constraint assertion time => FSC Selection (FS)

• Support complexity partitioning
◦ high-overhead operations (FI) are executed once

• Modular design
◦ split operations on “governor” and policy
◦ better support operation optimization

• off-line computation (FI)
• HW acceleration, e.g. look-up based implementation (FO, FS)

Go to Overheads Graph



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.

cpm_core

cpm_sysfs

cpm_policy

cpm_governor

platform_code

cpm_data

4 update

2 register

7 monitor

1 register 3 subscribe

driver

5 update_request

6 notify

Device Drivers

export framework

data

require framework

integration

provide framework

implementation

indirect calldirect callfunctional dependency

Legend

Platform Code

CPM Framework

CPM Policies

Main framework components and their relationship



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.

cpm_core

cpm_sysfs

cpm_policy

cpm_governor

platform_code

cpm_data

4 update

2 register

7 monitor

1 register 3 subscribe

driver

5 update_request

6 notify

Device Drivers

export framework

data

require framework

integration

provide framework

implementation

indirect calldirect callfunctional dependency

Legend

Platform Code

CPM Framework

CPM Policies

Main framework components and their relationship



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.

cpm_core

cpm_sysfs

cpm_policy

cpm_governor

platform_code

cpm_data

4 update

2 register

7 monitor

1 register 3 subscribe

driver

5 update_request

6 notify

Device Drivers

export framework

data

require framework

integration

provide framework

implementation

indirect calldirect callfunctional dependency

Legend

Platform Code

CPM Framework

CPM Policies

Main framework components and their relationship



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.

cpm_core

cpm_sysfs

cpm_policy

cpm_governor

platform_code

cpm_data

4 update

2 register

7 monitor

1 register 3 subscribe

driver

5 update_request

6 notify

Device Drivers

export framework

data

require framework

integration

provide framework

implementation

indirect calldirect callfunctional dependency

Legend

Platform Code

CPM Framework

CPM Policies

Main framework components and their relationship



Introduction Motivations Proposal Conclusions

CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.

cpm_core

cpm_sysfs

cpm_policy

cpm_governor

platform_code

cpm_data

4 update

2 register

7 monitor

1 register 3 subscribe

driver

5 update_request

6 notify

Device Drivers

export framework

data

require framework

integration

provide framework

implementation

indirect calldirect callfunctional dependency

Legend

Platform Code

CPM Framework

CPM Policies

Main framework components and their relationship



Introduction Motivations Proposal Conclusions

Conclusions and Future Work

Resuming the Proposal

• Distributed approach for performances vs power trade-off control
◦ supports constraint based PM
◦ scalable on upcoming more and more complex architectures
◦ provides multi-objective optimizations

• Layered design
◦ optimization layer on top of an abstraction layer
◦ improved code reuse and portability

• Simple platform code and drivers interface
◦ few modifications required
◦ easily exploits platform and devices fine-details

• Validated using a formal optimization model

• Up-to-date implementation, rebased on mainline Linux kernel
◦ providing a sysfs interface and some dummy test modules to support

testing and benchmarking



Introduction Motivations Proposal Conclusions

Conclusions and Future Work

Looking Forward

• The implementation is going to be released in ML for RFC
◦ basic implementation of the designed software architecture
◦ public GIT repository: still missing!
◦ discuss, review, rework. . . community feedbacks are welcome!

• Find real-world applications
◦ the constrained PM concept should be pushed

. . . the QoS PM interface is almost unused

◦ try it: it’s free!

• Provide guidelines for DWR definition
◦ distributed control assign different target to different levels
◦ local policies should fit well within the model

• Improve the user-space interface
◦ integration within a resource management system framework
◦ automate constraint assertion

• Investigate on HW acceleration possibilities



Add-ons

Q&A



Add-ons

Linear Programming (LP) Formulation

• The PM optimization problem can be formulated as an LP problem

• LP elements:
◦ solution space – SWMs Domain
◦ objective function – vector representing QoS optimization directions
◦ constraints – QoS requirements

• dynamically reduce the number of valid FSCs

◦ convex hall – the smallest convex polygon including all valid FSCs
◦ valid solution – every point inside the convex hall
◦ optimal solutions – vertexes or edges of the convex hall

• can always be mapped to 1 or 2 FSCs

Go to Motivations



Add-ons

CPM Overheads

• Worst-Case Analysis
◦ synthetic drivers to configure the worst operating conditions
◦ running on VirtualBox, host: Intel Core 2@1.6GHz
◦ note: non-Cartesian logarithmic X axis

Hoverheads % wrt 60s timeframe

Go to Implementation Notes



Add-ons

Implementation Summary

$ git diff 4be3bd78.. --stat

Documentation/cpm/00-INDEX.txt | 61 +

Documentation/cpm/core.txt | 264 +++

Documentation/cpm/governors.txt | 146 ++

Documentation/cpm/overview.txt | 131 ++

Documentation/cpm/platform.txt | 123 ++

Documentation/cpm/policies.txt | 131 ++

Documentation/cpm/testing.txt | 67 +

Documentation/cpm/user-guide.txt | 139 ++

drivers/Kconfig | 2 +

drivers/Makefile | 1 +

drivers/cpm/Kconfig | 112 ++

drivers/cpm/Makefile | 10 +

drivers/cpm/cpm_core.c | 3402 +++++++++++++++++++++++++++++++++

drivers/cpm/cpm_governor_exhaustive.c | 420 ++++

drivers/cpm/cpm_policy_dummy.c | 122 ++

drivers/cpm/cpm_policy_performance.c | 199 ++

drivers/cpm/test/Kconfig | 38 +

drivers/cpm/test/Makefile | 7 +

drivers/cpm/test/cpm_test_bandwidth.c | 218 +++

drivers/cpm/test/cpm_test_dummy.c | 459 +++++

drivers/cpm/test/cpm_test_mp3gsm.c | 316 +++

include/linux/cpm.h | 491 +++++

22 files changed, 6859 insertions(+), 0 deletions(-)



Add-ons

Example - System-Wide Metrics Definitions

// SWM Identifiers definitions

#define SWM_AMBA_BANDWIDTH CPM_ASM_TOT+0

#define SWM_ADSP_CLK CPM_ASM_TOT+1

// Platform specific SWM (PSM) definition

struct cpm_swm cpm_platform_psm[] = {

CPM_PLATFORM_SWM("AMBA_BANDWIDTH", CPM_TYPE_GIB, CPM_USER_RW,

CPM_COMPOSITION_ADDITIVE, 0, 8000),

CPM_PLATFORM_SWM("ADSP_CLK", CPM_TYPE_GIB, CPM_USER_RO,

CPM_COMPOSITION_ADDITIVE, 0, 266),

};

// PSM Registration

struct cpm_platform_data cpm_platform_data = {

.swms = cpm_platform_psm,

.count = ARRAY_SIZE(cpm_platform_psm),

};

cpm_register_platform_psms(&cpm_platform_data);

Go to Definition



Add-ons

Example - Device Working Region

struct cpm_swm_range vdsp_dwr0_ranges[] = { /* V-DSP MPEG4 decoding mode */

DEV_DWR_ASM(CPM_VCODEC, 1, 1, CPM_ASM_TYPE_RANGE),

DEV_DWR_ASM(CPM_DSP_CLK, 40, 132, CPM_ASM_TYPE_RANGE),

};

struct cpm_swm_range vdsp_dwr1_ranges[] = { /* V-DSP OFF mode */

DEV_DWR_ASM(CPM_VCODEC, 0, 0, CPM_ASM_TYPE_RANGE),

DEV_DWR_ASM(CPM_DSP_CLK, 0, 132, CPM_ASM_TYPE_RANGE),

};

struct cpm_dev_dwr vdsp_dwrs_list[] = { /* V-DSP working mode */

DEV_DWR("Mpeg4", vdsp_dwr0_ranges, ARRAY_SIZE(vdsp_dwr0_ranges)),

DEV_DWR("OFF", vdsp_dwr1_ranges, ARRAY_SIZE(vdsp_dwr1_ranges)),

};

static struct cpm_dev_data vdsp_data = { /* V-DSP DWR’s registration */

.notifier_callback = vdsp_cpm_callback,

.dwrs = vdsp_dwrs_list,

.dwrs_count = ARRAY_SIZE(vdsp_dwrs_list),

};

ret = cpm_register_device(&vdsp.dev, &vdsp_data);

Go to Definition



Add-ons

Example - Real Use-Case

• Youtube and Torrent
◦ 3 ASM:

• acodec, vcodec,
bandwidth

◦ 2 PSM:

• cpu freq,
cpu dsp platform

◦ devices(dwr):

• modem(5), vcodec(4),
acodec(4), cpu(7),
platform(7)

◦ Identified FSC: 415

• 10% out of 3920 of
worst case analysis


	Introduction
	Let me present
	Focusing the presentation's topic

	Motivations
	Multiple sub-system specific policies
	Emerging system-wide optimization support

	Proposal
	Where are we going?
	CPM in a Nutshell - Architecture
	CPM in a Nutshell - The Abstraction Layer
	CPM in a Nutshell - The Modelling Layer
	CPM in a Nutshell - The Optimization Layer
	CPM in a Nutshell - Proof-of-Concepts

	Conclusions
	Conclusions and Future Work

	Appendix
	Add-ons


