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Introduction Motivations Proposal Conclusions

Focusing the presentation’s topic

Outline

• Highlight some issues of current Linux kernel PM support

• Advance a proposal to tackle these problems
◦ not a finale solution
◦ try to focus attention on the topic
◦ trigger a discussion to improve this kind of support
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Multiple sub-system specific policies

Power Management Techniques

• Focusing on devices and
interconnections
◦ almost any direct

applications input

• Device specific’s policies
◦ multiple policies for

single device

• System-wide Policies
◦ tracks subsystem’s

specific dependencies
◦ dependency tree
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How can we achieve system-wide optimization?
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Multiple sub-system specific policies

Multiple-Policy Approach: Potential Issues

• Multiple decision points
◦ difficult inter-dependencies tracking
◦ risk of conflicting decisions

• Only indirect info about applications QoS requirements
◦ user-space know the requirements, kernel should support them
◦ application requirements should drive kernel frameworks tuning

• No proper aggregation on applications requirements
◦ only some frameworks provide it (e.g V/I fw, “new” clock fw)
◦ risk of code duplication

• No feed-back on resources availability
◦ applications could require resources from multiple devices
◦ behavior depends on effective availability of all the required resources

The composition of almost independent optimization policies cannot
grant a system-wide optimization
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Emerging system-wide optimization support

Constrained Power Management

• drivers’ local policies
◦ targeted to power reduction
◦ fine-details, low-overhead

• coordination entity
◦ exploit system-wide view
◦ track resource availability and

devices’ inter-dependencies

• global optimization policy
◦ multi-objective, low-frequency

• single user-space interface
◦ collects QoS requirements
◦ feedback on resource availability

• constraint assertion

QoS requirements
set constraint on local policies

Drivers
Local

policies

Distributed control model
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Emerging system-wide optimization support

The PM QoS interface

Linux kernel infrastructure to implement a coordination mechanism
among drivers (capabilities) and application (QoS requirements)

• Developed by Intel for iwl4965 WiFi driver on x86
◦ since Linux 2.6.25 (linux/pm qos params.h)

• Defines a (limited) set of “abstract” QoS parameters
◦ i.e. latencies, timeouts and throughput
◦ maintains a list of QoS requests and aggregate requirements

• restrictive aggregation only, i.e. Min/Max
• this aggregation generates a constraint

◦ provides notification chain for constraint update

• drivers subscribe to parameters of interests
e.g. CPUidle is constrained by ’system latency’

◦ Drivers’ local policies should grant required constraints

• no failures handling on notify chain calls
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Emerging system-wide optimization support

Limitations of the PM QoS Interface

“The notion of constraint based PM has been rattling around for a while
now. PMQoS is just an early application of it. I think a lot more could

be done in this area.” M. Gross

◦ Missing support for platform-specific parameters
◦ No additive constraints concepts support
◦ Only best-effort approach

current

pm_qos

MAX
54Mb/s

Additive

Constraint

value

20Mb/s

OPTIMAL

E1 QoSE2
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Where are we going?

Our Goals

• Define a formal model for system-wide performance vs power
control
◦ based on constraints-based approach
◦ drivers could collaborate to find the optimal system-wide

configuration

with respect to all QoS requirements

◦ support multi-objective optimizations

• Implementation based on latest Linux kernel
◦ overcoming current QoSPM limitations

• Validate the model and the implementation on real hardware
◦ STM’s Nomadik platform
◦ evaluate overheads and performances
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CPM in a Nutshell - Architecture

Abstracting the Reality, Modeling the Abstraction

Hierarchical Distributed
Control

• Devices’ local control

• Abstracting reality

• Modeling Abstraction

• Model optimization

• Considering QoS
requirements

• Constraint local policies
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Local
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Platform Code

Device

Driver

local

policy

Device

Driver
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Key: information flowabstractiondevice/toolpiece of information
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CPM in a Nutshell - The Abstraction Layer

System-Wide Metric (SWM)

A parameter describing the behaviors of a running system and used
to track resources availability

• QoS requirements: are expressed as validity ranges on SWM
mainly upper/lower bounds

• Different abstraction levels
◦ Abstract System-wide Metric (ASM), platform independent

exposed to user-land
e.g. ambient light/noise, power source, specific application requirements

◦ Platform System-wide Metric (PSM), platform dependent
private to platform code and platform drivers
e.g. bus bandwidth, devices’ latency

• Allow to track QoS inter-dependencies
◦ platform drivers and code can translate ASM’s requirements into

PSM’s constraints

Code Example
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CPM in a Nutshell - The Abstraction Layer

Device Working Region (DWR)

The mapping on SWMs’ range of
a device operating mode

• A device could have different
working modes
◦ different QoS => different

SWM range

• Defined by the device driver

• Implicitly allows devices
dependencies tracking

• Graphic representation

π21

π24

π25

π26

π23

π22

π12π11 π13 π14

d3

working

regions

C31

C32

C33

p1

p2

A device with 3 DWR (cdm) mapping 2 SWM (pi )

Code Example
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CPM in a Nutshell - The Modelling Layer

Feasible System-wide Configurations (FSC)

The intersection of a least a DWR
for each device

• QoS requirements within a FSC
◦ all devices can support the

required QoS level
◦ no conflicts

• identify all and only the feasible
system’s working modes
◦ all the possible solutions for the

PM optimization problem
◦ define an abstract model for

system-wide optimizations

d1

C11 C12

d2

C22

C21

C23

d3

working

regions

C31

C32

C33

p1

p2

FSC 3

FSC 2

FSC 1

The 3 FSCs existing on this system
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CPM in a Nutshell - The Optimization Layer

A Formal Optimization Framework

• Using Linear Programming (LP)
◦ well known mathematical multi-objective optimization framework

• Two-fold goal
◦ formally justify the proposal

• through the equivalence with a well known exact method for optimal
solution search

◦ guide the design of an efficient implementation
• we don’t want to solve an LP problem
• identify possible simplifications
• exploit problem specificities

Use LP formulation to identify a solution-equivalent and efficient
optimization strategy

Go to Formulation
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CPM in a Nutshell - The Optimization Layer

Putting it All Together

1. DWRs registration

2. FSC identification

3. Constraint aggregation

4. FSC validation

5. FSC selection
◦ optimization policy −→og

• Different time domains
◦ boot-time: steps 1-2
◦ run-time: steps 3-5

• step 5 can be simplified
by FSC pre-ordering
◦ policy defined

e.g. FSC3, FSC1, FSC2
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CPM in a Nutshell - Proof-of-Concepts

A Real Optimization Framework

• Translate the formal (LP) model into an efficient implementation

• Exploit tree different time domains
◦ boot time => FSC Identification (FI)
◦ policy update time => FSC Ordering (FO)
◦ constraint assertion time => FSC Selection (FS)

• Support complexity partitioning
◦ high-overhead operations (FI) are executed once

• Modular design
◦ split operations on “governor” and policy
◦ better support operation optimization

• off-line computation (FI)
• HW acceleration, e.g. look-up based implementation (FO, FS)

Go to Overheads Graph
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CPM in a Nutshell - Proof-of-Concepts

Framework Design

• framework core
◦ data types, ASM
◦ glue code
◦ user-space API

• platform code
◦ PSM definition

• device drivers
◦ DWR definition
◦ constraints auth.

• governor
◦ FSC identification

• policy
◦ FSC ordering
◦ constraints auth.
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Conclusions and Future Work

Resuming the Proposal

• Distributed approach for performances vs power trade-off control
◦ supports constraint based PM
◦ scalable on upcoming more and more complex architectures
◦ provides multi-objective optimizations

• Layered design
◦ optimization layer on top of an abstraction layer
◦ improved code reuse and portability

• Simple platform code and drivers interface
◦ few modifications required
◦ easily exploits platform and devices fine-details

• Validated using a formal optimization model

• Up-to-date implementation, rebased on mainline Linux kernel
◦ providing a sysfs interface and some dummy test modules to support

testing and benchmarking
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Conclusions and Future Work

Looking Forward

• The implementation is going to be released in ML for RFC
◦ basic implementation of the designed software architecture
◦ public GIT repository: still missing!
◦ discuss, review, rework. . . community feedbacks are welcome!

• Find real-world applications
◦ the constrained PM concept should be pushed

. . . the QoS PM interface is almost unused

◦ try it: it’s free!

• Provide guidelines for DWR definition
◦ distributed control assign different target to different levels
◦ local policies should fit well within the model

• Improve the user-space interface
◦ integration within a resource management system framework
◦ automate constraint assertion

• Investigate on HW acceleration possibilities
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Linear Programming (LP) Formulation

• The PM optimization problem can be formulated as an LP problem

• LP elements:
◦ solution space – SWMs Domain
◦ objective function – vector representing QoS optimization directions
◦ constraints – QoS requirements

• dynamically reduce the number of valid FSCs

◦ convex hall – the smallest convex polygon including all valid FSCs
◦ valid solution – every point inside the convex hall
◦ optimal solutions – vertexes or edges of the convex hall

• can always be mapped to 1 or 2 FSCs

Go to Motivations
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CPM Overheads

• Worst-Case Analysis
◦ synthetic drivers to configure the worst operating conditions
◦ running on VirtualBox, host: Intel Core 2@1.6GHz
◦ note: non-Cartesian logarithmic X axis

Hoverheads % wrt 60s timeframe

Go to Implementation Notes
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Implementation Summary

$ git diff 4be3bd78.. --stat

Documentation/cpm/00-INDEX.txt | 61 +

Documentation/cpm/core.txt | 264 +++

Documentation/cpm/governors.txt | 146 ++

Documentation/cpm/overview.txt | 131 ++

Documentation/cpm/platform.txt | 123 ++

Documentation/cpm/policies.txt | 131 ++

Documentation/cpm/testing.txt | 67 +

Documentation/cpm/user-guide.txt | 139 ++

drivers/Kconfig | 2 +

drivers/Makefile | 1 +

drivers/cpm/Kconfig | 112 ++

drivers/cpm/Makefile | 10 +

drivers/cpm/cpm_core.c | 3402 +++++++++++++++++++++++++++++++++

drivers/cpm/cpm_governor_exhaustive.c | 420 ++++

drivers/cpm/cpm_policy_dummy.c | 122 ++

drivers/cpm/cpm_policy_performance.c | 199 ++

drivers/cpm/test/Kconfig | 38 +

drivers/cpm/test/Makefile | 7 +

drivers/cpm/test/cpm_test_bandwidth.c | 218 +++

drivers/cpm/test/cpm_test_dummy.c | 459 +++++

drivers/cpm/test/cpm_test_mp3gsm.c | 316 +++

include/linux/cpm.h | 491 +++++

22 files changed, 6859 insertions(+), 0 deletions(-)
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Example - System-Wide Metrics Definitions

// SWM Identifiers definitions

#define SWM_AMBA_BANDWIDTH CPM_ASM_TOT+0

#define SWM_ADSP_CLK CPM_ASM_TOT+1

// Platform specific SWM (PSM) definition

struct cpm_swm cpm_platform_psm[] = {

CPM_PLATFORM_SWM("AMBA_BANDWIDTH", CPM_TYPE_GIB, CPM_USER_RW,

CPM_COMPOSITION_ADDITIVE, 0, 8000),

CPM_PLATFORM_SWM("ADSP_CLK", CPM_TYPE_GIB, CPM_USER_RO,

CPM_COMPOSITION_ADDITIVE, 0, 266),

};

// PSM Registration

struct cpm_platform_data cpm_platform_data = {

.swms = cpm_platform_psm,

.count = ARRAY_SIZE(cpm_platform_psm),

};

cpm_register_platform_psms(&cpm_platform_data);

Go to Definition
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Example - Device Working Region

struct cpm_swm_range vdsp_dwr0_ranges[] = { /* V-DSP MPEG4 decoding mode */

DEV_DWR_ASM(CPM_VCODEC, 1, 1, CPM_ASM_TYPE_RANGE),

DEV_DWR_ASM(CPM_DSP_CLK, 40, 132, CPM_ASM_TYPE_RANGE),

};

struct cpm_swm_range vdsp_dwr1_ranges[] = { /* V-DSP OFF mode */

DEV_DWR_ASM(CPM_VCODEC, 0, 0, CPM_ASM_TYPE_RANGE),

DEV_DWR_ASM(CPM_DSP_CLK, 0, 132, CPM_ASM_TYPE_RANGE),

};

struct cpm_dev_dwr vdsp_dwrs_list[] = { /* V-DSP working mode */

DEV_DWR("Mpeg4", vdsp_dwr0_ranges, ARRAY_SIZE(vdsp_dwr0_ranges)),

DEV_DWR("OFF", vdsp_dwr1_ranges, ARRAY_SIZE(vdsp_dwr1_ranges)),

};

static struct cpm_dev_data vdsp_data = { /* V-DSP DWR’s registration */

.notifier_callback = vdsp_cpm_callback,

.dwrs = vdsp_dwrs_list,

.dwrs_count = ARRAY_SIZE(vdsp_dwrs_list),

};

ret = cpm_register_device(&vdsp.dev, &vdsp_data);

Go to Definition
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Example - Real Use-Case

• Youtube and Torrent
◦ 3 ASM:

• acodec, vcodec,
bandwidth

◦ 2 PSM:

• cpu freq,
cpu dsp platform

◦ devices(dwr):

• modem(5), vcodec(4),
acodec(4), cpu(7),
platform(7)

◦ Identified FSC: 415

• 10% out of 3920 of
worst case analysis
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