
Optimizing and Developing Non-CPU Device
Power Management by DEVFREQ

Chanwoo Choi
Samsung Electronics

#lfelc

#ossummit #lfelc

Contents

• DEVFREQ?
– How To Add Devfreq Driver and Devfreq Governor
– Sysfs Interface

• Collaboration with other Frameworks

• Simple Profiling and Performance Tuning Point

• Use-Case in Mainline Kernel

• Weakness of DEVFREQ and Further TODO

#ossummit #lfelc

DEVFREQ?

• Performance Demand
– High-Quality image generated by GPU
– Data Transfer within deadline via Memory Bus
– Low Latency for accessing Storage

• Power-Consumption Requirement
– Increase the battery capacity continuously

• Need to support 1DVFS for Non-CPU Power-management

• Provide power-management mechanism for Non-CPU
device to keep balance between Performance and Power

#ossummit #lfelc

DEVFREQ with System Status

Busy Status

Idle Status

Suspend Status

CPUFREQ

Suspend-to-RAM

CPUIDLE Runtime PM
(pm_runtime)

Power Domain
(genpd)

CPU Device Non-CPU Device

CPU HOTPLUG

DEVFREQ
• GPU
• Memory Controller/Bus
• Storage
• Other Non-CPU devices

#ossummit #lfelc

DEVFREQ Internal Module

DEVFREQ

Timer
for checking

current device load

Adjust Final Freq
to consider various

requirement

Suspend
to suspend devfreq

device and stop/start
governor

User by Sysfs Thermal Interconnect

Governor
Result PM QoS OPP

Core
Sysfs

to show or store
devfreq value

Governor

Get Device Status
to get current device

load

Manage lifecycle
of governor

performance
powersave
userspace

simple_ondemand
passive

Device Own Governor

#ossummit #lfelc

DEVFREQ relation with External Framework

DEVFREQ

Secure OS/Firmware

1SMCCCRegulator

Voltage by PMIC

CCF

Clock

Regmap/mmio

Device

Devfreq
Governor Perf and others

Devfreq-Event

PMQoS

Device

User via Sysfs

User

Interconnect

Device

Thermal

OPP

Device

OPP

1. SMCCC (Secure Monitor Call Calling Convention)

How To Add Devfreq Driver &
How To Add Devfreq Governor

#ossummit #lfelc

DEVFREQ Device Driver

• Support DVFS by controlling clock and voltage
according to device status

• The kind of DEVFREQ Driver
– GPU like ARM Panfrost/Lima, MSM GPU
– Memory Bus like AMBA AXI Bus
– Memory Controller like DMC (Dynamic Memory Controller)
– Storage like UFS (Universal Flash Storage)
– L2 Cache
– And so on

#ossummit #lfelc

Step to Add DEVFREQ Driver

1. Initialize ‘struct devfreq_dev_profile’ for device profile
– Initialize ‘polling_ms’ of timer period and ‘timer’ is either deferrable or delayed timer.
– Implement ‘target’ fucntion to set the next frequency/voltage
– Implement ‘get_dev_status’ function to get current device status

2. Get clock/regulator and OPP table from DeviceTree
– devm_clk_get(), devm_regulator_get(), dev_pm_opp_of_add_table() or other OPP helper functions

3. Choose governor
– simple_ondemand, userspace and others.

4. Add devfreq device
– devm_devfreq_add_device(device, devfreq_dev_profile, governor, data)

5. (optional) Register OPP notifier
– devm_devfreq_register_opp_notifier(device, devfreq)

#ossummit #lfelc

How to Add DEVFREQ Driver - struct devfreq_dev_profile
Name Descritpion Mandatory

or Optional

initial_freq Initial frequency. Optional

polling_ms Polling interval for timer. If 0, disable polling. The unit is millisecond(ms). Optional
But, If
simple_ondemand,
Mandatory

timer Timer type is either deferrable or delayed timer. The default value is deferrable timer.
- DEVFREQ_TIMER_DEFERRABLE is for deferrable timer.

with CONFIG_HIGH_RES_TIMERS, CONFIG_NO_HZ
- DEVFREQ_TIMER_DELAYED is for delayed timer.

Optional

up_threshold If the load is over this value, the frequency jumps.
Valid value = 0 to 100. Default value is 90. downdifferential < upthreshold must hold.

Optional

down_differential If the load is under upthreshold - downdifferential, the frequency downs.
Valid value = 0 to 100. Default value is 5. downdifferential < upthreshold must hold.

Optional

(*target) Set operating frequency decided by devfreq core with both governo and PM QoS request Mandatory

(*get_dev_status) Return the current load of devfreq device. The result is used for deciding the next frequency by
governor.

Optional
But, If
simple_ondemand,
Mandatory

(*get_cur_freq) Return the current correct frequency. Optional

(*exit) Exit the devfreq device. Optional

#ossummit #lfelc

DEVFREQ Governor

• Decide proper frequency by governor algorithm
• User can add the own device governor

• Governor
– simple_ondemand
– performance
– powersave
– userspace
– passive

• Device Own Governor
– tegra_actmon

#ossummit #lfelc

Step to Add DEVFREQ Governor

1. Initialize ‘struct devfreq_governor’ for governor
– Initialize ‘name’ of governor name.
– Implement ‘get_target_freq’ functioin to get next frequency decided by governor algorithm.
– Implement ‘event_handler’ function to handle the governor event for governor lifecycle.

2. Add devfreq governor
– devfreq_add_governor(devfreq_governor);

3. The devfreq governor will be used by devfreq drivers.

#ossummit #lfelc

How to Add DEVFREQ Governor - struct devfreq_governor
Name Descritpion Mandatory

or Optional

name Governor name like “simple_ondemand”, “performance”. Mandatory

attr Governor sysfs attribute flag. Basically, common sysfs attributes are added to devfreq class
and need to initialize the following flags for using non-general sysfs attributes .
- DEVFREQ_GOV_ATTR_POLLING_INTERVAL : polling_interval
- DEVFREQ_GOV_ATTR_TIMER : timer
- DEVFREQ_GOV_ATTR_UP_THRESHOLD : up_threshold
- DEVFREQ_GOV_ATTR_DOWN_DIFF : down_differential

Optional

flag Governor feature flag
- DEVFREQ_GOV_FLAG_IMMUTABLE : If set, this governor is never changeable to others.
- DEVFREQ_GOV_FLAG_IRQ_DRIVEN : If set, this governor is working with irq instead of timer.

Optional

(*get_target_freq) Return the desired operating frequency for the device according to governor algorithm. Mandatory

(*event_handler) Callback for devfreq core to notify events to governors.
- DEVFREQ_GOV_START : When governor start
- DEVFREQ_GOV_STOP : When governor stop
- DEVFREQ_GOV_UPDATE_INTERVAL : When timer interval is updated via sysfs
- DEVFREQ_GOV_SUSPEND : When governor suspend
- DEVFREQ_GOV_RESUME : When governor resume

Mandatory

#ossummit #lfelc

Example to Add Device Own Governor

• “tegra_actmon” governor
in drivers/devfreq/tegra30_devfreq.c

static struct devfreq_governor tegra_devfreq_governor = {
.name = "tegra_actmon",
.attr = DEVFREQ_GOV_ATTR_POLLING_INTERVAL,
.flag = DEVFREQ_GOV_FLAG_IMMUTABLE

| DEVFREQ_GOV_FLAG_IRQ_DRIVEN,
.get_target_freq = tegra_governor_get_target,
.event_handler = tegra_governor_event_handler,

};

‘poling_interval’ sysfs is used for
Tegra ACTMON h/w period setting.

‘_FLAG_IMMUTABLE’ means that if
device used ‘tegra_actmon’ governor,
it cannot change to other governors.

‘_IRQ_DRIVEN’ means that it is based
on interrupt method instead of timer.

Return the desired operating frequency
according to Tegra ACTMON governor
algorithm.

Handle Tegra ACTMON governor
lifecycle in accordance with
DEVFREQ_GOV_* event.

In Summary,
• Immutable and Interrupt method for sampling
• Use Tegra ACTMON Governor instead of default

devfreq governors

#ossummit #lfelc

DEVFREQ Driver and Governor Behavior

Governor

TimerGet Device
Status

Device
Governor

sysfs: governor
sysfs: up_threshold
sysfs: down_differential

sysfs: polling_interval
sysfs: timer

If governor is immutable,
it cannot be changed.

Adjust Final Freq

DEVFREQ
Devce Driver

DEVFREQ
Core

DEVFREQ
Governor

3. Get current device load
devfreq_dev_profile->get_dev_status()

2. Get target freq from governor
devfreq_governor->get_target_freq()

5. Set final frequency
devfreq_dev_profile->target()

4. Return target Frequency from Governor

1. Re-run Timer

devfreq_governor->event_handler()
DEVFREQ_GOV_START
DEVFREQ_GOV_STOP
DEVFREQ_GOV_SUSPEND
DEVFREQ_GOV_RESUME
DEVFREQ_GOV_UPDATE_INTERVAL

Manage lifecycle
of governor

User
via sysfs

PM QoS Request
dev_pm_qos_update_request()

Thermal Inter
connect

OPPDevice

opp_disable
opp_enable

Set Min and Max Freq Enable and Disable Freq

sysfs: min_freq
sysfs: max_freq

#ossummit #lfelc

Simple_ondmeand Governor Behavior

Governor

TimerGet Device
Status

sysfs: up_threshold
sysfs: down_differential

sysfs: polling_interval
sysfs: timer (deferrable or delayed)

Adjust Final Freq

DEVFREQ
Devce Driver

DEVFREQ
Core

DEVFREQ
Governor

3. Get current device load 5. Set final frequency

4. Return target Frequency from Governor

1. Re-run Timer

DEVFREQ_GOV_START
DEVFREQ_GOV_STOP
DEVFREQ_GOV_SUSPEND
DEVFREQ_GOV_RESUME
DEVFREQ_GOV_UPDATE_INTERVAL

Manage lifecycle
of governor

devfreq_simple_ondemand_handler()

User
via sysfs

PM QoS Request
dev_pm_qos_update_request()

Thermal Inter
connect OPPDevice

directly

opp_disable
opp_enable

Set Min and Max Freq Enable and Disable Freq

sysfs: min_freq
sysfs: max_freq

2. Get target freq from governor
devfreq_simple_ondemand_func()

in drivers/devfreq/governor_simple_ondemand.c
static struct devfreq_governor devfreq_simple_ondemand = {

.name = DEVFREQ_GOV_SIMPLE_ONDEMAND,

.attr = DEVFREQ_GOV_ATTR_POLLING_INTERVAL
| DEVFREQ_GOV_ATTR_TIMER
| DEVFREQ_GOV_ATTR_UP_THRESHOLD
| DEVFREQ_GOV_ATTR_DOWN_DIFF,

.get_target_freq = devfreq_simple_ondemand_func,

.event_handler = devfreq_simple_ondemand_handler,
};

#ossummit #lfelc

Passive Governor

• Depend on behavior of parent device such
as other devfreq device or CPU.

• Pattern of using passive governor
– Two devices share the same power source.

A Device
with

simple_ondemand
governor

B Device
with passive

governor

Power Source
(regulator)

1. Change freq & power by governor

2. Notify changes to passive device

3. Decide appropriate freq
according to changed power.

#ossummit #lfelc

Example of Passive Governor

• Memory Bus Device
in Samsung Exynos5422 SoC

– VDD_INT regulator provides power
to 15 1AMBA AXI Bus device.

• Step to change freq/voltage
– Decide next freq/voltage on WCORE device.

• User can change the governor of WCORE device via
sysfs and then passive device freq will be changed.

– If next freq is higher than previous freq,
• Change WCORE’s freq & voltage
• Change freq of 15 AMBA AXI Bus

– If next freq is less than previous freq,
• Change freq of 15 AMBA AXI bus
• Change WCORE’s freq & voltage

VDD_INT WCORE
NOC

FSYS_APB
FSYS2
MFC
GEN
PERI
G2D

G2D_ACP
JPEG

JPEG_APB
DISP1_FIMD

DISP1

1. AMBA (Advanced Microcontroller Bus Architecture) AXI (Advanced eXtensible Interface)

GSCL_SCALER
MSCL

Parent device

Passive device

Sysfs Interface

#ossummit #lfelc

Common Sysfs Interface for Devfreq Class

Name Descritpion RW

governor Show and store the current governor name RW

available_governor Show the available governor list RO

available_frequencies Show the available frequencies RW

target_freq Show the current frequency of the one of OPP table RO

cur_freq Show the current frequency of hardware clock rate
if get_cur_freq() is implemented by devfreq driver.
If get_cur_freq() is not implemented, it is same with taget_freq.

RO

min_freq Show and store the minimum frequency RW

max_freq Show and store the maximum frequency RW

trans_stat Show the frequency transition statistics and time in state
To reset the statistics as following:

echo 0 > /sys/class/devfreq/[dev name]/trans_stat

RW

#ossummit #lfelc

Non-Common Sysfs Interface for Devfreq Governor

• Each governor is able to choose the following sysfs nodes if
it is needed

Name Descritpion RW Use-case

timer Show and store the timer type (deferrable or delayed)
- DEVFREQ_GOV_ATTR_TIMER

RW simple_ondemand

polling_interval Show and store the polling interval
- DEVFREQ_GOV_ATTR_POLLING_INTERVAL

RW simple_ondemand
tegra_actmon

up_threshold Show and store up_threshold tuning point
- flag name : DEVFREQ_GOV_UP_THRESHOLD

RW simple_ondemand

down_differential Show and store down_differential tuning point
- flag name : DEVFREQ_GOV_DOWN_DIFF

RW simple_ondemand

#ossummit #lfelc

DEVFREQ Governor of both Sysfs and Feature Flags
governor

sysfs node
simple

_ondemand peformance powersave userspace passive tegra30_actmon

Common
Sysfs Interface
for devfreq class

governor O O O O O O

available_governors O O O O O O

available_frequencies O O O O O O

cur_freq O O O O O O

target_freq O O O O O O

min_freq O O O O O O

max_freq O O O O O O

trans_stat O O O O O

Non-common
Sysfs Interface
for specific
governor

polling_interval O X X X X O

timer O X X X X X

up_threshold O X X X X X

down_differential O X X X X X

Governor feature
for specific
governor

immutable X X X X O O

interrupt_driven X
(polling

based on timer)

X X X X O
(polling

based on h/w irq)

Collaboration with other
Frameworks
- OPP
- PM QoS
- Interconnect
- Thermal

#ossummit #lfelc

What is Collaboration Purpose with other Framework?

• Boosting or Constrainting Frequency
– Change the frequency range according to mode

• ie. Performance, Optimized, Powersave and Ultra-Powersave mode

– Boosting for preventing performance drop
– Constrainting for preventing either high-temperature or misuse power

User
via sysfs
min/max_freq

PM QoS
dev_pm_qos_update_request()

Thermal Inter
connect OPPDevice

directly

opp_disable
opp_enable

Set min and max frequency

1000 Mhz
900 Mhz
800 Mhz
700 Mhz
600 Mhz
400 Mhz
200 Mhz

1200 Mhz
1100 Mhz
1000 Mhz
900 Mhz
800 Mhz
700 Mhz
600 Mhz
400 Mhz
200 Mhz

1200 Mhz
1100 Mhz
1000 Mhz
900 Mhz
800 Mhz
700 Mhz
600 Mhz
400 Mhz
200 Mhz

1200 Mhz
1100 Mhz

Disable and enable freq

DEVFREQ
Governor

DEVFREQ
Core

DEVFREQ
Devcie Driver

Available 5 Frequency Level

Target Freq

Final Freq

#ossummit #lfelc

OPP (Operating Performance Points) with DEVFREQ

• OPP is mandatory to support DVFS with
frequency and voltage.

• OPP provides helper function to get
OPP info from devicetree

– dev_pm_opp_of_add_table()
– dev_pm_opp_of_remove_table()

• Handle clock and regulator by OPP
helper function

– dev_pm_opp_set_rate()
– dev_pm_opp_set_regulators()
– dev_pm_opp_put_regulators()

in arch/arm/boot/dts/exynos3250.c

bus_dmc_opp_table: opp_table1 {
compatible = “opeating-points-v2”;

opp-50000000 {
opp-hz = /bits/ 64 <50000000>;
opp-microvolt = <800000>;

}
opp-100000000 {

opp-hz = /bits/ 64 <100000000>;
opp-microvolt = <800000>;

}
opp-134000000 {

opp-hz = /bits/ 64 <134000000>;
opp-microvolt = <800000>;

}
opp-200000000 {

opp-hz = /bits/ 64 <200000000>;
opp-microvolt = <825000>;

}
opp-400000000 {

opp-hz = /bits/ 64 <400000000>;
opp-microvolt = <875000>;

}
};

bus_dmc: bus_dmc {
compatible = “Samsung,exynos-bus”;
clocks = <&cmu_dmc CLK_DIV_DMC>;
clock-names = “bus”;
operating-points-v2 = <&bus_dmc_opp_table>;

}

#ossummit #lfelc

OPP - Enable & Disable Each Frequency

• Enable and Disable OPP entries
– dev_pm_opp_disable(dev, 200000000)
– dev_pm_opp_disable(dev, 134000000)
– dev_pm_opp_disable(dev, 100000000)

– dev_pm_opp_enable(dev, 134000000)

in arch/arm/boot/dts/exynos3250.c

bus_dmc_opp_table: opp_table1 {
compatible = “opeating-points-v2”;

opp-50000000 {
opp-hz = /bits/ 64 <50000000>;
opp-microvolt = <800000>;

}
opp-100000000 {

opp-hz = /bits/ 64 <100000000>;
opp-microvolt = <800000>;

}
opp-134000000 {

opp-hz = /bits/ 64 <134000000>;
opp-microvolt = <800000>;

}
opp-200000000 {

opp-hz = /bits/ 64 <200000000>;
opp-microvolt = <825000>;

}
opp-400000000 {

opp-hz = /bits/ 64 <400000000>;
opp-microvolt = <875000>;

}
};

bus_dmc: bus_dmc {
compatible = “Samsung,exynos-bus”;
clocks = <&cmu_dmc CLK_DIV_DMC>;
clock-names = “bus”;
operating-points-v2 = <&bus_dmc_opp_table>;

}

#ossummit #lfelc

PMQoS used by DEVFREQ

• Set min and max frequency to guarantee device’s demand
– DEV_PM_QOS_MIN_FREQUENCY
– DEV_PM_QOS_MAX_FREQUENCY

• Example,
– PM QoS Request

1. dev_pm_qos_add_request(device, qos_request, DEV_PM_QOS_MIN_FREQUENCY)
2. dev_pm_qos_request_active(qos_request)
3. dev_pm_qos_update_request(qos_request, frequency)

– Read PM QoS Requests
1. dev_pm_qos_read_value(dev, DEV_PM_QOS_MIN_FREQUENCY)

– PM QoS Release
1. dev_pm_qos_update_request(qos_request, 0)
2. dev_pm_qos_remove_request(qos_request)

#ossummit #lfelc

Interconenct with DEVFREQ

• Interconnect framework control the setting of the
‘interconnects on an SoC’ like memory controller
and data bus.

• Two framework might be connected through PM
QoS interface for guaranting performance.

DEVFREQ Device Driver Bridge by PM QoS Interface INTERCONNECT Device Driver

drivers/devfreq/imx-bus.c
drivers/devfreq/imx8m-ddrc.c

IMX SoC

PM QoS
DEV_PM_QOS_MIN_FREQUENCY

drivers/interconnect/imx/imx.c
drivers/interconnect/imx/imx8mq.c
drivers/interconnect/imx/imx8mm.c
drivers/interconnect/imx/imx8mn.c

drivers/devfreq/exynos-bus.c PM QoS
DEV_PM_QOS_MIN_FREQUENCY

drivers/interconnect/exynos/exynos.c
(But, not yet merged and under review)

Example of connection between DEVFREQ and Interconnect Device Driver

#ossummit #lfelc

Example of NXP I.MX SoC

drivers/devfreq/imx8
m-ddrc.c

drivers/devfreq/imx-
bus.cDEVFREQ

DEV_PM_QOS_MIN_FREQUENCY

Set demanded bandwidth
for each interconnect path

Require the clock change
according to the parent device
of each interconnect node

PM QoS

Register platform driver for
interconnect device

drivers/interconnect/imx/imx8mq.c
drivers/interconnect/imx/imx8mm.c
drivers/interconnect/imx/imx8mn.c

Register child platform_device
for interconnect device

platform_device_register_data(p
arent device of imx-bus, ...)

drivers/interconnect/imx/imx.c

Create
interconnect node

interconnect
nodeinterconnect

nodeinterconnect
nodeinterconnect

nodeinterconnect
nodeinterconnect

nodeinterconnect
nodeinterconnect

nodeinterconnect
node

Probe
of interconnect
device/driver

INTERCONNECT

#ossummit #lfelc

Thermal with DEVFREQ

• Register devfreq device as a cooling device
– drivers/thermal/devfreq_cooling.c

• Basically, adjust frequency by using fixed trip-points
defined in devicetree
– step_wise thermal governor

• More Advanced than fixed trip-points method, adjust
frequency with IPA (Intelligent Power Allocator) governor
using EM (Energy Model).

#ossummit #lfelc

Thermal IPA and EM with DEVFREQ

DEVFREQCPUFREQ

EAS
(Energy Aware Scheduler)

IPA
(Intelligent Power Allocator)

CPU Device Non-CPU Device

Non-CPU Device
(e.g., GPU)

CPU Device

Energy Model

Simple Profiling
& Peformance Tuning Point
- sysfs
- debugfs
- tracepoint
- genpd, pm_runtime

#ossummit #lfelc

Simple Profiling

• Debugfs
– devfreq_summary

• Sysfs (Sampling)
– min_freq, cur_freq, max_freq and trans_stat sysfs interface

• Tracepoint (Tracing)
– devfreq, thermal, power

• Device power status (active or supended)
– Generic Power Domain and Runtime PM

#ossummit #lfelc

Simple Profiling - Debugfs Interface

• /sys/kernel/debug/devfreq/devfreq_summary
– Test device : Odroid-XU3 (Samsung Exynos5422 SoC)

• 17 Non-CPU devices
• 1 GPU (11800000.gpu) / simple_ondemand / 177MHz ~ 600MHz
• 1 Memory Controller (10c20000.memory-controller) / performance / 165MHz~825Mz
• 1 AMBA AXI Bus (soc:bus_wcore) / simple_ondemand / 88.7MHz ~ 532MHz
• 14 AMBA AXI Bus with ‘soc:bus_wcore’ parent device / passive

GPU
Memory Controller

Memory Data Bus

#ossummit #lfelc

Simple Profiling - Sysfs Interface

• min_freq, max_freq and cur_freq
– How to control them

• echo [available frequency] > /sys/class/devfreq/[dev name]/min_freq and read it
• echo [available frequency] > /sys/class/devfreq/[dev name]/max_freq and read it
• cat > /sys/class/devfreq/[dev name]/cur_freq

– How to use them for profiling
• Make simple shell script to print the frequency periodically.

• trans_stat
– Show transition statistics and time in each frequency
– How to control them

• echo 0 > /sys/class/devfreq/[dev name]/trans_stat and read it

#ossummit #lfelc

Simple Profiling - Sysfs ‘trans_stat’

• How to use it for performance profiling
1. Try to tune and optimize the your code
2. Reset trans_stat by ‘echo 0 > /sys/class/devfreq/[dev name]/trans_stat’
3. Read ‘time_in_state’ by ‘cat /sys/class/devfreq/[dev name]/trans_stat’
4. Execute benchmark tool
5. Read ‘time_in_state’
6. Calculate diff ‘time_in_state’ between before and after benchmark tool

$cat /sys/class/devfreq/10c20000.memory-controller/trans_stat
From : To

: 165000000 206000000 275000000 413000000 543000000 633000000 728000000 825000000 time(ms)
165000000: 0 0 0 0 0 0 0 2 230
206000000: 0 0 0 0 1 0 0 0 110
275000000: 0 0 0 0 0 0 0 0 0
413000000: 0 0 0 0 0 0 0 5619 620750
543000000: 1 0 0 0 0 0 0 857 95100
633000000: 0 0 0 0 0 0 0 0 0
728000000: 0 0 0 0 0 0 0 0 0

* 825000000: 1 1 0 5619 857 0 0 0 861580
Total transition : 12958

#ossummit #lfelc

Simple Profiling - Tracepoint

• DEVFREQ
– Track devfreq behavior when frequency change and monitoring

• /sys/kernel/debug/tracing/event/devfreq/devfreq_frequency
• /sys/kernel/debug/tracing/event/devfreq/devfreq_monitor

• Thermal
– Track throttling or un-throttling point due to high temperature

• /sys/kernel/debug/tracing/event/thermal/thermal_temperature
• /sys/kernel/debug/tracing/event/thermal/thermal_zone_trip

• PM QoS
– Track what request the pm qos of both minimum and maximum freq

• /sys/kernel/debug/tracing/event/power/dev_pm_qos_update_rquest

#ossummit #lfelc

Simple Profiling - Tracepoint Event

• devfreq_monitor
– Show when device monitoring is executed by timer.
– It is used to check how often it has been monitored.

• devfreq_frequency
– Show frequency change point.
– This is useful for determining whether or not the frequency has changed at the appropriate

timing and checking the history of frequency change.

• thermal_temperature
– Show temperature of thermal device like CPU, GPU

• thermal_zone_trip
– Show trip point when arrived at the specific temperature (throttling or un-throttling)

• dev_pm_qos_update_request
– Show qos request point with request value

#ossummit #lfelc

Simple Profiling - Tracepoint

• How to use it for performance profiling
1. Enable tracepoint of devfreq, PM QoS and thermal

2. Enable tracepoint of performance-sensitive devices
• DRM for display controller

– if 60 fps is required, each vblank interrupt must happen within
approximate 16 ms.

• V4L2 for video playback
• Storage access latency

#ossummit #lfelc

Simple Profiling – Tracepoint Example
<idle>-0 [000] d.h3 238.482603: drm_vblank_event: crtc=0, seq=1279, time=238482167819, high-prec=false

<idle>-0 [000] d.h3 238.499290: drm_vblank_event: crtc=0, seq=1280, time=238498856819, high-prec=false
<idle>-0 [000] d.h3 238.516033: drm_vblank_event: crtc=0, seq=1281, time=238515546527, high-prec=false
bash-1547 [002] 238.522249: dev_pm_qos_update_request: device=11800000.gpu type=0x3 new_value=500000
bash-1547 [002] 238.522631: devfreq_frequency: dev_name=11800000.gpu freq=543000000 prev_freq=420000000 load=0

<idle>-0 [000] d.h3 238.532679: drm_vblank_event: crtc=0, seq=1282, time=238532241902, high-prec=false
<idle>-0 [000] d.h3 238.549361: drm_vblank_event: crtc=0, seq=1283, time=238548928944, high-prec=false

kworker/u16:0-7 [005] 238.550829: devfreq_monitor: dev_name=soc:bus_wcore freq=88700000 polling_ms=50 load=29
kworker/u16:0-7 [005] 238.560687: devfreq_monitor: dev_name=10c20000.memory-controller freq=825000000 polling_ms=100 load=10

<idle>-0 [000] d.h3 238.566054: drm_vblank_event: crtc=0, seq=1284, time=238565621861, high-prec=false
bash-1547 [002] 238.572262: dev_pm_qos_update_request: device=soc:bus_wcore type=0x3 new_value=500000
bash-1547 [002] 238.575658: devfreq_frequency: dev_name=soc:bus_wcore freq=532000000 prev_freq=88700000 load=29
bash-1547 [002] 238.575792: devfreq_frequency: dev_name=soc:bus_noc freq=111000000 prev_freq=66600000 load=0
bash-1547 [002] 238.575909: devfreq_frequency: dev_name=soc:bus_fsys_apb freq=222000000 prev_freq=111000000 load=0
bash-1547 [002] 238.576030: devfreq_frequency: dev_name=soc:bus_fsys2 freq=200000000 prev_freq=75000000 load=0
bash-1547 [002] 238.578577: devfreq_frequency: dev_name=soc:bus_mfc freq=333000000 prev_freq=83250000 load=0
bash-1547 [002] 238.578724: devfreq_frequency: dev_name=soc:bus_gen freq=266000000 prev_freq=88700000 load=0
bash-1547 [002] 238.578902: devfreq_frequency: dev_name=soc:bus_g2d freq=333000000 prev_freq=83250000 load=0
bash-1547 [002] 238.579013: devfreq_frequency: dev_name=soc:bus_g2d_acp freq=266000000 prev_freq=66500000 load=0
bash-1547 [002] 238.579120: devfreq_frequency: dev_name=soc:bus_jpeg freq=300000000 prev_freq=75000000 load=0
bash-1547 [002] 238.579236: devfreq_frequency: dev_name=soc:bus_jpeg_apb freq=166500000 prev_freq=83250000 load=0
bash-1547 [002] 238.579345: devfreq_frequency: dev_name=soc:bus_disp1_fimd freq=200000000 prev_freq=120000000 load=0
bash-1547 [002] 238.579440: devfreq_frequency: dev_name=soc:bus_disp1 freq=300000000 prev_freq=120000000 load=0

<idle>-0 [000] d.h3 238.582748: drm_vblank_event: crtc=0, seq=1285, time=238582313652, high-prec=false
bash-1547 [002] 238.582762: devfreq_frequency: dev_name=soc:bus_gscl_scaler freq=300000000 prev_freq=150000000 load=0
bash-1547 [002] 238.582874: devfreq_frequency: dev_name=soc:bus_mscl freq=666000000 prev_freq=84000000 load=0

<idle>-0 [000] d.h3 238.599439: drm_vblank_event: crtc=0, seq=1286, time=238599005569, high-prec=false
kworker/u16:0-7 [006] 238.610882: devfreq_monitor: dev_name=soc:bus_wcore freq=532000000 polling_ms=50 load=29
(snip)
kworker/0:3-323 [000] 240.163710: thermal_temperature: thermal_zone=cpu3-thermal id=3 temp_prev=54000 temp=61000
kworker/0:3-323 [000] 240.163738: thermal_zone_trip: thermal_zone=cpu3-thermal id=3 trip=0 trip_type=ACTIVE
kworker/0:3-323 [000] 240.163773: thermal_zone_trip: thermal_zone=cpu3-thermal id=3 trip=1 trip_type=ACTIVE

‘poling_interval’fdsafsaf sysfs is used for
Tegra ACTMON h/w period setting.

Check interval of
each vblank irq

PM QoS request
to Devfreq device

Frequency
Change

Check throttling
or not w/ thermal

#ossummit #lfelc

Simple Profiling - Device Status

• Runtime PM
– /sys/devices/platform/soc/[device name]/power/runtime_status

• Generic Power Domain
– /sys/kernel/debug/pm_genpd/pm_genpd_summary

DEVFREQ
Busy
Status

Idle Status

Suspend Status

CPUFREQ

Suspend-to-RAM

CPUIDLE Runtime PM
(pm_runtime)

Power
Domain
(genpd)

CPU Device Non-CPU Device

CPU
HOTPLUG

#ossummit #lfelc

Simple Profiling - Check device status via Debugfs

• Can check the device status as following:
$ cat /sys/kernel/debug/pm_genpd/pm_genpd_summary
domain status children

/device runtime status

CAM off-0
MSC off-0
(snip)
MAU on
(snip)
DISP on

/devices/platform/soc/10010000.clock-controller/exynos5-subcmu.3.auto active
/devices/platform/soc/14650000.sysmmu active
/devices/platform/soc/14640000.sysmmu suspended
/devices/platform/soc/14680000.sysmmu suspended
/devices/platform/soc/14450000.mixer active
/devices/platform/soc/14530000.hdmi active

G3D on
/devices/platform/soc/10010000.clock-controller/exynos5-subcmu.2.auto active
/devices/platform/soc/11800000.gpu suspended

(snip)
Test device : Odroid-XU3 (Samsung Exynos5422 SoC)

The devfreq_summary shows
‘GPU’ devfreq device.

But, when try to print
tracepoint for GPU, doesn’t
work, even If GPU device uses
simple_ondemand with timer.

Because GPU device status is
suspended by runtime PM.

#ossummit #lfelc

Support runtime PM for device to reduce power waste

• DEVFREQ provides the following governor helper function
to control governor according to device power status

Governor Helper Function Governor Status Description
devfreq_monitor_start(struct devfreq) DEVFREQ_GOV_START Start governor for devfreq device

devfreq_monitor_stop(struct devfreq) DEVFREQ_GOV_STOP Stop governor for devfreq device

devfreq_monitor_suspend(struct devfreq) DEVFREQ_GOV_SUSPEND Suspend governor for devfreq device
If this has ‘suspend-opp’ property in devicetree,
set suspend frequency indicatd by ‘suspend-opp.

devfreq_monitor_resume(struct devfreq) DEVFREQ_GOV_RESUME Resume governor for devfreq device
If this has ‘suspend-opp’ property in devicetree,
recover the last frequency

devfreq_update_interval(struct devfreq) DEVFREQ_GOV_UPDATE_INTERVAL Update polling interval by devfreq device driver
instead of sysfs interface

#ossummit #lfelc

Performance Tuning Point - Sysfs

• timer and polling_interval
– echo (deferrable|delayed) > /sys/class/devfreq/[dev name]/timer

• deferrable timer is not expired if CPU idle.
• delayed timer doesn’t care CPU status.

– echo [positive integer] > /sys/class/devfreq/[dev name]/polling_interval

• up_threshold and down_differential
– echo [0-100] > /sys/class/devfreq/[dev name]/up_threshold
– echo [0-100] > /sys/class/devfreq/[dev name]/down_differential

#ossummit #lfelc

Performance Tuning Point - Deferrable vs. Delayed

• Difference between deferrable vs. delayed timer
– Need CONFIG_HIGH_RES_TIMERS and CONFIG_NO_HZ for derrrable timer

Deferrable

Delayed

Expired

CPU BUSY CPU BUSY CPU BUSYIDLE IDLE

XX

#ossummit #lfelc

Performance Tuning Point - Deferrable timer’s bad case

• In case of DMA without CPU operation,
DMA operation transfer data between memory and device.

Deferrable

BUSY BUSYIDLE

DMA operationDMA
Operation

Device
Frequency

LOW

HIGH
Performance Drop

IDLEDMA
operation

BUSY IDLE

DMA operation IDLE

#ossummit #lfelc

Performance Tuning Point - Sysfs

• timer and polling_interval

• up_threshod and down_differential
Freq Up
Speed

Freq Down
Speed up_threshold down_differential Performance

vs. Low Power

Fastly Fastly low high -

Fastly Slowly low low Highest Performance

Slowly Fastly high high -

Slowly Slowly high low Lowest Power

timer polling_interval Recommendation use-case But, it is not always true.

deferrable long - The non-cpu device is related to CPU status
- Don’t want to wakeup CPU due to dev monitoring

deferrable short - Don’t want to wakeup CPU due to dev monitoring
- Need to react fastly on CPU busy

delayed long - The non-cpu device is less or not related to CPU status like DMA.

delayed short - The non-cpu device is less or not related to CPU status like DMA.
- Need to react fastly always

#ossummit #lfelc

Performance Tuning Point - Summary
timer polling

_interval
up

_threshold
down

_differential min_freq max_freq PM QoS
Request

Recommendation use-case
But, it is not always true.

How often
monitoring dev

in accordance with
CPU busy or idle

How often
monitoring dev

on CPU busy
for reactivly

Frequency
Up Speed

for reactivity

Frequency
Down Speed
for reactivity

Frequency
Boosting for
high-
performance

Resource
Limiting for low-
power or high-
temperature

- - - - - - - Powersave Govenor

deferrable long high low default Lower max_freq
close to min_freq

- Lowest Power

deferrable short - - Non-Aggressive Use

- The non-cpu device is related to CPU
status and also don’t want to wakeup CPU
due to dev monitoring.
- polling_interval is short, it will be reacted
as soon as possible.

deferrable long - - Aggressive Use
- Keep the lower power on almost case
and want to support high-performance on
fixed scenario use-case.

delayed short low low Aggressive Use

- The non-cpu device is less or not related
to CPU status like DMA.
- Fastly frequency up and slowsy frequency
down.
- Never permit the performance drop for
specific scenario.

delayed short low low Higher min_freq
close to max_freq default Aggressive

use
Highest Performance

- - - - - - Performance Governor

Use-Case in Mainline Kernel

#ossummit #lfelc

DEVFREQ Driver in Mainline Kernel (1/2)

• GPU
• ARM AMBA Bus
• DMC (Dynamic Memory Controller)
• UFS (Universal Flash Storage) Storage
• L2 Cache

– Recently, mainline posted for Qualcomm Krait L2 Cache and under review.

#ossummit #lfelc

DEVFREQ Driver in Mainline Kernel (2/2)

Device Type Driver Path SoC Vendor Used Governor Description

GPU drivesr/gpu/drm/panfrost/panfrost_devfr
eq.c ARM simple_ondemand

Almost driver have been using
simple_ondemand governor.

It means that must need to improve
simple_ondemand governor or
suggest new innovative governor
like cpufreq schedutil governor.

drivesr/gpu/drm/lima/lima_devfreq.c ARM simple_ondemand

drivesr/gpu/drm/msm/msm_gpu.c Qualcomm simple_ondemand

Memory Controller drivers/memory/samsung/exynos5422-
dmc.c Samsung simple_ondemand

driver/devfreq/imx8m-ddrc.c NXP simple_ondemand

drivers/devfreq/rk3399_dmc.c Rockchip simple_ondemand

Memory Data Bus drivers/devfreq/exynos-bus.c Samsung simple_ondemand
passive

drivers/devfreq/imx-bus.c NXP simple_ondemand

Storage (UFS) drivers/scsi/ufs/ufshcd.c Generic device simple_ondemand

Specific SoC Device drivers/devfreq/tegra30_devfreq.c Nvidia tegra_actmon

drivers/devfreq/tegra20_devfreq.c Nvidia tegra_actmon

Weakness of DEVFREQ
& Further TODO

#ossummit #lfelc

What are Weakness of DEVFREQ?

• Too old governor based on timer-based sampling
method. Need new governor or method to monitor
device for immediate response.

– Schedutil governor of CPUFREQ framework

• Too simply checking the device status at that
time without considering history and don’t expect
future device status to prevent performance drop.

– PELT (Per-Entity Load Tracking) of CPU scheduler
– Ladder governor of CPUIDLE framework

#ossummit #lfelc

Further ToDo

• Support ‘required-opp’ property of OPP to specify
the correct pair between parent and passive device.

• Expand ‘passive’ governor depend on CPU Frequency
– In the mainline, there are many requirement about this. But, it has not yet completed.

• For more immediate response, support kthread-based timer
– DEVFREQ_TIMER_WQ_DEFERRABLE : Deferrrable work
– DEVFREQ_TIMER_WQ_DELAYED : Delayed work
– DEVFREQ_TIMER_KTHREAD : Kthread with SCHED_NORMAL
– DEVFREQ_TIMER_KTHREAD_RT : Ktherad with SCHED_FIFO

• Need kselfset for DEVFREQ device

#ossummit #lfelc

Appendix

• ‘devfreq_frequency’ tracepoint patch (merged to devfreq.git)
– https://git.kernel.org/pub/scm/linux/kernel/git/chanwoo/linux.git/log/?h=devfreq-next

• [v4,0/2] PM / devfreq: Add governor feature and attribute flag
– https://patchwork.kernel.org/project/linux-pm/cover/20201020030407.21047-1-

cw00.choi@samsung.com/

• up_threshold and down_differential patch (not yet posted, but can refer to it)
– https://git.kernel.org/pub/scm/linux/kernel/git/chanwoo/linux.git/log/?h=devfreq-testing

https://git.kernel.org/pub/scm/linux/kernel/git/chanwoo/linux.git/log/?h=devfreq-next
https://patchwork.kernel.org/project/linux-pm/cover/20201020030407.21047-1-cw00.choi@samsung.com/
https://git.kernel.org/pub/scm/linux/kernel/git/chanwoo/linux.git/log/?h=devfreq-testing

