
Productizing Telephony and Audio 
in a GNU/Linux (Sailfish OS) 

Smartphone

Martti Piirainen (martti.piirainen@tieto.com)
Tieto Product Development Services



Agenda

● Hardware / software stack overview
● Audio

– What we did and why

– Some implementation details

● Telephony
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About the speaker

● Martti Piirainen
– Cellular telephony expert (from modem to UI)

– 15 years in SW development, Linux mobile devices since 2010

● Tieto Product Development Services
– R&D in communications and embedded technologies

– Part of Tieto, 14000 employees, headquarters in Finland 
– More at www.tieto.com/pds 

● This presentation covers work done by Tieto for Jolla

http://www.tieto.com/pds


Hardware Stack

● “Jolla” smartphone
● Qualcomm MSM8930 SoC

(from “Snapdragon S4” family)
– incl. dual-core Krait ARM CPU

– incl. GSM/UMTS/LTE cellular modem

– incl. multimedia accelerators



Software Stack

● Sailfish OS
● UI layer mostly done in QML
● Middleware based on Nemo Mobile project
● Based on Mer Linux distribution
● Android™ BSP plus some libhybris magic



Audio Use Cases

● Play music, video, anything with sound in it
– Media player, web browser, 3rd party apps, ...

● System / feedback sounds
● Cellular voice calls

– Two-way speech

– Ringtone

– Generate various signalling sounds

● Volume control / muting



Audio Use Cases, cont'd

● Output devices
– Speaker, earpiece, wired or Bluetooth headphones

● Input devices
– Built-in microphone, wired or Bluetooth headset microphone

● Audio routing
– Which sound input (software process or physical device) is connected to 

which sound output?

● Audio policy
– Which apps / services are allowed to use which resource? Example: 

Ringtone takes precedence over media player
– Also, automatic routing changes. Example: Plug in headset ==> route audio 

to headset & adjust volume



Audio Routing & Policy Stack

PulseAudio 
& OHM

ALSA drivers

Qualcomm Audio
(& Bluetooth & Modem) HW

Android Audio HAL

Android
AudioFlinger
& AudioPolicy module-droid

GStreamer & 
other clients



Some of our Work in Audio

● New PulseAudio modules
– module-droid-{card,source,sink,keepalive}

– Use Android HAL (via libhybris) for routing

– Media audio routes through these streams

– Cellular audio and Bluetooth audio streams stay in 
the SoC side ... 

– ... but we control routing, volume, muting, etc.



Some of our Work in Audio, cont'd

● Implement all resource policy in Sailfish
– Based on Maemo / MeeGo legacy

● Productize:
– Tune the configurations (e.g. volume levels, priorities)
– Test, bugfix, rinse, repeat

● Alternative approach: We might have used PulseAudio 
ALSA-modules and ALSA Use Case Manager
– Also a lot of work, esp. UCM porting
– Less portable



PulseAudio and Audio HAL 
talk via C function calls

Initialization snippet from pulseaudio-modules-droid/src/droid/droid-util.c:

hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, 

    module­>name, (const hw_module_t**) &hwmod);

if (!hwmod) {

    pa_log("Failed to get hw module %s.",

        module­>name);

    goto fail;

}

ret = audio_hw_device_open(hwmod, &device);

from libhybris (hardware.c)

from Audio HAL (audio.h)



Audio routing example:
Speaker during call

● During a voice call, enable the Integrated Hands-Free
– i.e. change downlink speech audio routing from earpiece to 

speaker

● Sequence:
Voicecall UI 
==> OHM 
==> Dependency Resolver 
==> PulseAudio policy module
==> core PulseAudio
==> PulseAudio droid-sink module
==> Android Audio HAL



Audio routing example cont'd

Snippet from pulseaudio-modules-droid/src/
    droid/droid-sink.c:

pa_snprintf(tmp, sizeof(tmp), "%s=%u;",

    AUDIO_PARAMETER_STREAM_ROUTING, routing);

pa_log_debug("set_parameters(): %s (%#010x)",
    tmp, routing);

pa_droid_hw_module_lock(u­>hw_module);

u­>stream_out­>common.set_parameters(
    &u­>stream_out­>common, tmp);

pa_droid_hw_module_unlock(u­>hw_module);

from Audio HAL (audio.h)



Telephony

● The “phone” part of “smartphone”
● Everything around Cellular (GSM / WCDMA / LTE) 

connectivity
● Most visibly voice calls, text messaging, packet data ...
● ... but also many more obscure and “legacy” things
● The modem implements the “hard” protocol-level problems, 

but modem interfaces are still massive beasts



Telephony, cont'd

● Linux Telephony daemon: oFono
– Design principle: hide unnecessary complexity 

from the phone UI

– Happy 5th Birthday, oFono!



Telephony Stack

oFono

QMI drivers

Qualcomm Modem
(& Audio & Bluetooth) HW

Android RIL daemon

RIL (Java)

rilmodem

Telepathy & 
other clients



Some of our Work in Telephony

● Extend existing oFono rilmodem driver
– https://github.com/rilmodem/ofono , used by Ubuntu Touch

– Basic use cases of voice call / SMS / packet data were already 
implemented by Canonical

● Fix what's broken and add what's missing
– https://github.com/nemomobile-packages/ofono , used by Sailfish OS

– Examples following:

● SIM-related things
– Security handling (PIN, PUK), phonebook access

– SIM Toolkit. “Legacy” but requested by operators. Example: A mobile 
authentication service

https://github.com/rilmodem/ofono
https://github.com/nemomobile-packages/ofono


Some of our Work in Telephony, 
cont'd

● Advanced call handling
– Hold/resume, multiparty
– Emergency calls always possible. Regulatory requirement in some markets.
– Signalling tones

● SMS improvements
– Delivery report handling
– Text encodings. Example: SMS containing advanced Unicode (emoticons as surrogate pairs)

● Network handling
– Operator selection (automatic / manual), roaming behaviour, user preferences
– Show network name / Service Provider name. Important for operators' branding.
– Flight mode



Some of our Work in Telephony, 
cont'd

● Supplementary Services
– Call Forwarding / Waiting / Barring

– CLIR (show / hide my number), USSD

● Settings provisioning
– Packet data and MMS. Pre-configured and Over-The-Air

● Modem power management based on system activity state
● “OEM Raw” extension API for proprietary modem requests
● Fixes in telepathy-ring, the port from csd to oFono was 

somewhat unfinished



Some of our Work in Telephony, 
cont'd

● Productize:
– Prioritize requirements from product mgmt, operators, end users (we just 

couldn't do everything at once)
– Don't just do the “happy cases”. Example: Many requests can be rejected 

by the network and/or SIM

– Test, bugfix, rinse, repeat
– Including surprises from field testing

– Utilizing network and SIM card simulators

● Alternative approach: We might have extended oFono's QMI driver
– RIL API is on a slightly higher level of abstraction, increases portability, 

hides modem-specific quirks
– RIL implementation is ”battle-hardened” in Android devices



oFono and RIL talk via 
UNIX socket and messages

Initialization snippet from ofono/gril/gril.c:

#define RILD_CMD_SOCKET "/dev/socket/rild"

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, RILD_CMD_SOCKET,

    sizeof(addr.sun_path) ­ 1);

if (connect(sk, (struct sockaddr *) &addr, 

    sizeof(addr)) < 0) { ... }



oFono example: Call Waiting status

● Set / Query the status of the “Call Waiting” supplementary 
service (a.k.a. “knocking”) to / from the network

● Client calls oFono via D-Bus:
– Object path /ril_0

– Set the “call waiting” status: 
Method org.ofono.CallSettings.SetProperty, 
arguments (string:"VoiceCallWaiting",
  variant:string:"enabled")

– Get the “call waiting” status: 
Method org.ofono.CallSettings.GetProperties



oFono example cont'd, 
oFono behavior

● The D-Bus request is handled by oFono's call-settings atom
– checks if busy with a pending request, and argument validity

– checks availability of a modem driver implementing this

● Request is forwarded to rilmodem call-settings driver
– Driver constructs a request message 

– gril plug-in sends it to RIL
● which does the actual modem and network request

– Driver parses the response message

– Callback to oFono core, reply to D-Bus client



oFono example cont'd, 
RIL messages

Request message, oFono ==> RIL

000000     10 23000000       e801  000001000000             00000000     

000000     1800000000         e801  00000000000002000000                     01000000       01000000     

Response message, RIL ==> oFono

msg length

RIL_REQUEST_QUERY_CALL_WAITING, from ril.h

serial number

service class “all”

“enabled” ... for “voice”



Achievements Summary

● Using Android HAL and RIL was speeding up 
our product development
– From first hacks on target hardware to commercial 

launch in a few months

– CE and Bluetooth HFP certified

– A beautiful phone with happy users
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Repositories in GitHub.com

mer-packages/pulseaudio

mer-hybris/pulseaudio-modules-droid

nemomobile/pulseaudio-modules-nemo

nemomobile/pulseaudio-policy-enforcement

nemomobile/ohm

nemomobile/ohm-plugins-misc

nemomobile/libdres-ohm

nemomobile/ohm-rule-engine

nemomobile/policy-settings-common

nemomobile/tone-generator

nemomobile/telepathy-ring

nemomobile/provisioning-service

nemomobile-packages/ofono

PulseAudio + modules

Audio Policy

Telephony
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