
Productizing Telephony and Audio 
in a GNU/Linux (Sailfish OS) 

Smartphone

Martti Piirainen (martti.piirainen@tieto.com)
Tieto Product Development Services



Agenda

● Hardware / software stack overview
● Audio

– What we did and why

– Some implementation details

● Telephony
– What we did and why

– Some implementation details



About the speaker

● Martti Piirainen
– Cellular telephony expert (from modem to UI)

– 15 years in SW development, Linux mobile devices since 2010

● Tieto Product Development Services
– R&D in communications and embedded technologies

– Part of Tieto, 14000 employees, headquarters in Finland 
– More at www.tieto.com/pds 

● This presentation covers work done by Tieto for Jolla

http://www.tieto.com/pds


Hardware Stack

● “Jolla” smartphone
● Qualcomm MSM8930 SoC

(from “Snapdragon S4” family)
– incl. dual-core Krait ARM CPU

– incl. GSM/UMTS/LTE cellular modem

– incl. multimedia accelerators



Software Stack

● Sailfish OS
● UI layer mostly done in QML
● Middleware based on Nemo Mobile project
● Based on Mer Linux distribution
● Android™ BSP plus some libhybris magic



Audio Use Cases

● Play music, video, anything with sound in it
– Media player, web browser, 3rd party apps, ...

● System / feedback sounds
● Cellular voice calls

– Two-way speech

– Ringtone

– Generate various signalling sounds

● Volume control / muting



Audio Use Cases, cont'd

● Output devices
– Speaker, earpiece, wired or Bluetooth headphones

● Input devices
– Built-in microphone, wired or Bluetooth headset microphone

● Audio routing
– Which sound input (software process or physical device) is connected to 

which sound output?

● Audio policy
– Which apps / services are allowed to use which resource? Example: 

Ringtone takes precedence over media player
– Also, automatic routing changes. Example: Plug in headset ==> route audio 

to headset & adjust volume



Audio Routing & Policy Stack

PulseAudio 
& OHM

ALSA drivers

Qualcomm Audio
(& Bluetooth & Modem) HW

Android Audio HAL

Android
AudioFlinger
& AudioPolicy module-droid

GStreamer & 
other clients



Some of our Work in Audio

● New PulseAudio modules
– module-droid-{card,source,sink,keepalive}

– Use Android HAL (via libhybris) for routing

– Media audio routes through these streams

– Cellular audio and Bluetooth audio streams stay in 
the SoC side ... 

– ... but we control routing, volume, muting, etc.



Some of our Work in Audio, cont'd

● Implement all resource policy in Sailfish
– Based on Maemo / MeeGo legacy

● Productize:
– Tune the configurations (e.g. volume levels, priorities)
– Test, bugfix, rinse, repeat

● Alternative approach: We might have used PulseAudio 
ALSA-modules and ALSA Use Case Manager
– Also a lot of work, esp. UCM porting
– Less portable



PulseAudio and Audio HAL 
talk via C function calls

Initialization snippet from pulseaudio-modules-droid/src/droid/droid-util.c:

hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, 

    module­>name, (const hw_module_t**) &hwmod);

if (!hwmod) {

    pa_log("Failed to get hw module %s.",

        module­>name);

    goto fail;

}

ret = audio_hw_device_open(hwmod, &device);

from libhybris (hardware.c)

from Audio HAL (audio.h)



Audio routing example:
Speaker during call

● During a voice call, enable the Integrated Hands-Free
– i.e. change downlink speech audio routing from earpiece to 

speaker

● Sequence:
Voicecall UI 
==> OHM 
==> Dependency Resolver 
==> PulseAudio policy module
==> core PulseAudio
==> PulseAudio droid-sink module
==> Android Audio HAL



Audio routing example cont'd

Snippet from pulseaudio-modules-droid/src/
    droid/droid-sink.c:

pa_snprintf(tmp, sizeof(tmp), "%s=%u;",

    AUDIO_PARAMETER_STREAM_ROUTING, routing);

pa_log_debug("set_parameters(): %s (%#010x)",
    tmp, routing);

pa_droid_hw_module_lock(u­>hw_module);

u­>stream_out­>common.set_parameters(
    &u­>stream_out­>common, tmp);

pa_droid_hw_module_unlock(u­>hw_module);

from Audio HAL (audio.h)



Telephony

● The “phone” part of “smartphone”
● Everything around Cellular (GSM / WCDMA / LTE) 

connectivity
● Most visibly voice calls, text messaging, packet data ...
● ... but also many more obscure and “legacy” things
● The modem implements the “hard” protocol-level problems, 

but modem interfaces are still massive beasts



Telephony, cont'd

● Linux Telephony daemon: oFono
– Design principle: hide unnecessary complexity 

from the phone UI

– Happy 5th Birthday, oFono!



Telephony Stack

oFono

QMI drivers

Qualcomm Modem
(& Audio & Bluetooth) HW

Android RIL daemon

RIL (Java)

rilmodem

Telepathy & 
other clients



Some of our Work in Telephony

● Extend existing oFono rilmodem driver
– https://github.com/rilmodem/ofono , used by Ubuntu Touch

– Basic use cases of voice call / SMS / packet data were already 
implemented by Canonical

● Fix what's broken and add what's missing
– https://github.com/nemomobile-packages/ofono , used by Sailfish OS

– Examples following:

● SIM-related things
– Security handling (PIN, PUK), phonebook access

– SIM Toolkit. “Legacy” but requested by operators. Example: A mobile 
authentication service

https://github.com/rilmodem/ofono
https://github.com/nemomobile-packages/ofono


Some of our Work in Telephony, 
cont'd

● Advanced call handling
– Hold/resume, multiparty
– Emergency calls always possible. Regulatory requirement in some markets.
– Signalling tones

● SMS improvements
– Delivery report handling
– Text encodings. Example: SMS containing advanced Unicode (emoticons as surrogate pairs)

● Network handling
– Operator selection (automatic / manual), roaming behaviour, user preferences
– Show network name / Service Provider name. Important for operators' branding.
– Flight mode



Some of our Work in Telephony, 
cont'd

● Supplementary Services
– Call Forwarding / Waiting / Barring

– CLIR (show / hide my number), USSD

● Settings provisioning
– Packet data and MMS. Pre-configured and Over-The-Air

● Modem power management based on system activity state
● “OEM Raw” extension API for proprietary modem requests
● Fixes in telepathy-ring, the port from csd to oFono was 

somewhat unfinished



Some of our Work in Telephony, 
cont'd

● Productize:
– Prioritize requirements from product mgmt, operators, end users (we just 

couldn't do everything at once)
– Don't just do the “happy cases”. Example: Many requests can be rejected 

by the network and/or SIM

– Test, bugfix, rinse, repeat
– Including surprises from field testing

– Utilizing network and SIM card simulators

● Alternative approach: We might have extended oFono's QMI driver
– RIL API is on a slightly higher level of abstraction, increases portability, 

hides modem-specific quirks
– RIL implementation is ”battle-hardened” in Android devices



oFono and RIL talk via 
UNIX socket and messages

Initialization snippet from ofono/gril/gril.c:

#define RILD_CMD_SOCKET "/dev/socket/rild"

addr.sun_family = AF_UNIX;

strncpy(addr.sun_path, RILD_CMD_SOCKET,

    sizeof(addr.sun_path) ­ 1);

if (connect(sk, (struct sockaddr *) &addr, 

    sizeof(addr)) < 0) { ... }



oFono example: Call Waiting status

● Set / Query the status of the “Call Waiting” supplementary 
service (a.k.a. “knocking”) to / from the network

● Client calls oFono via D-Bus:
– Object path /ril_0

– Set the “call waiting” status: 
Method org.ofono.CallSettings.SetProperty, 
arguments (string:"VoiceCallWaiting",
  variant:string:"enabled")

– Get the “call waiting” status: 
Method org.ofono.CallSettings.GetProperties



oFono example cont'd, 
oFono behavior

● The D-Bus request is handled by oFono's call-settings atom
– checks if busy with a pending request, and argument validity

– checks availability of a modem driver implementing this

● Request is forwarded to rilmodem call-settings driver
– Driver constructs a request message 

– gril plug-in sends it to RIL
● which does the actual modem and network request

– Driver parses the response message

– Callback to oFono core, reply to D-Bus client



oFono example cont'd, 
RIL messages

Request message, oFono ==> RIL

000000     10 23000000       e801  000001000000             00000000     

000000     1800000000         e801  00000000000002000000                     01000000       01000000     

Response message, RIL ==> oFono

msg length

RIL_REQUEST_QUERY_CALL_WAITING, from ril.h

serial number

service class “all”

“enabled” ... for “voice”



Achievements Summary

● Using Android HAL and RIL was speeding up 
our product development
– From first hacks on target hardware to commercial 

launch in a few months

– CE and Bluetooth HFP certified

– A beautiful phone with happy users



Acknowledgements

● Warm thanks to:
– Everyone at Jolla

– Canonical rilmodem team

– oFono, PulseAudio, libhybris maintainers and 
contributors



Repositories in GitHub.com

mer-packages/pulseaudio

mer-hybris/pulseaudio-modules-droid

nemomobile/pulseaudio-modules-nemo

nemomobile/pulseaudio-policy-enforcement

nemomobile/ohm

nemomobile/ohm-plugins-misc

nemomobile/libdres-ohm

nemomobile/ohm-rule-engine

nemomobile/policy-settings-common

nemomobile/tone-generator

nemomobile/telepathy-ring

nemomobile/provisioning-service

nemomobile-packages/ofono

PulseAudio + modules

Audio Policy

Telephony


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

