
Building Container Images with
OpenEmbedded and the Yocto Project

Scott Murray
scott.murray@konsulko.com

mailto:scott.murray@konsulko.com

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

About Me
● Linux user/developer since 1996
● Embedded Linux developer starting in 2000
● Principal Software Engineer at Konsulko Group
● Konsulko Group

○ Services company specializing in Embedded Linux and Open Source Software
○ Hardware/software build, design, development, and training services.
○ Based in San Jose, CA with an engineering presence worldwide
○ https://konsulko.com

https://konsulko.com

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Agenda
● Quick overview of OpenEmbedded / Yocto Project
● Containers
● What can OE bring to the table?
● Example OE container build configurations

○ Full distribution and application containers
○ Nesting images (pre-installed application sandboxes)

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Caveats
● I am not a container expert, and this presentation does not cover the

mechanics of using the discussed container images in detail
● Container technology is progressing rapidly, it’s entirely possible I’ve missed

something of interest (Please let me know!)
● An intermediate level of OpenEmbedded / Yocto Project knowledge is

assumed

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OpenEmbedded & The Yocto Project
● OpenEmbedded (OE) is a build system and associated metadata to build

embedded Linux distributions.
● The Yocto Project (YP) is a collaboration project founded in 2010 to aid in the

creation of custom Linux based systems for embedded products. It is a
collaboration of many hardware and software vendors, and uses
OpenEmbedded as its core technology. A reference distribution called “poky”
(pock-EE) built with OE is provided by the Yocto Project to serve as a starting
point for embedded developers.

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notable OE / YP Features
● Broad CPU architecture support
● Strong vendor support
● Highly customizable, layered configuration metadata
● Focus on constrained embedded devices, so support for small images
● Regular release schedule
● Integrated license and source publishing compliance tools
● Working towards full binary reproducibility

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Containers
● Operating system level virtualization as opposed to virtual machines
● Linux implementations typically are based on namespaces and cgroups

○ LXC
○ Docker
○ runc
○ systemd-nspawn

● Newer Clear / Kata containers are based on lightweight VM technology
● Container images can be full Linux distribution installs, or small images

containing a single application and its dependencies

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Containers (continued)
● Common use cases:

○ Running an application that has incompatible dependencies from the host machine
○ Sandboxing an application to isolate it from the host machine
○ Implementing microservices where application containers are started based on demand

● Typical container construction
○ Start with a minimal Debian, Ubuntu, or Alpine Linux image
○ Add required packages
○ Potentially compile non-upstream available packages (e.g. via Dockerfile commands)
○ Prune container down by removing unneeded files

■ Small size is very desirable
■ Reduces security attack surface, maintenance, and migration time

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Container Drawbacks?
● Reproducibility

○ Base containers changes may not be obvious, e.g Docker labels may change
○ Package versions on Debian, Alpine, etc. changing

■ It’s not uncommon to see “apt-get update && apt-get upgrade -y”, etc. in Dockerfiles
■ Pinning package versions can break if the base distro doesn’t archive older versions

○ Even if automating with Dockerfile(s) or other scripting, effort required to ensure result is
reproducible

● Transparency / Security
○ You have to trust the builders of the base container
○ Security is dependent on the providers of the base container, i.e. distribution update policies
○ Often quoted problem of library updates potentially affecting many containers

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Container Drawbacks? (continued)
● License compliance scheme

○ Potentially can be pulled from package manager, but no particularly turn-key solutions

● Customization
○ Patching a package or tweaking its configuration flags requires manual or scripted rebuild
○ Building for an unsupported architecture requires delving into the distribution’s build process

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So is OE / YP a solution?
● Reproducibility

○ Image builds can be straightforwardly reproduced using fixed metadata

● Transparency / Security
○ Entire build process is bootstrapped from scratch
○ Typically 18 months support per release versus 5 years for Debian stable, ~2 years for Alpine

● License compliance scheme
○ Image license manifests and license text archiving
○ Source archiving

● Customization
○ Layered metadata and build process allows adding almost any customization
○ Any architecture with a BSP layer can be targeted

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So is OE / YP a solution? (continued)
● Package availability

○ Debian, Ubuntu several 10’s of K, Alpine ~5K
○ OE ~2300 in oe-core and meta-openembedded, many more in other layers
○ OE node.js and Python module availability is not as broad

● Ease of use
○ It’s possible, but quite involved to reproduce something like the apt-get, apk install user

experience with an OE built package feed
○ Small, relatively fixed content images are going to be easier to handle

● Resources
○ OE is a new toolset to learn
○ Building images can require significant hardware resources
○ Long term maintenance may involve dedicating resources

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OE / YP container support
● Container image type

○ Added in pyro / 2.3 release
○ IMAGE_FSTYPES = “container”
○ Produces a tar.bz2 with no kernel components or post-install scripts
○ Required PREFERRED_PROVIDER_virtual/kernel to be set to “dummy”

● meta-virtualization layer
○ Provides

■ LXC, runc, Docker (currently 18.03.0 in master/thud and sumo branches)
■ OCI image-tools
■ Kernel configuration fragments for linux-yocto

○ Currently no support for building OCI / Docker images during OE build
■ Difficult with Docker itself, since it needs its daemon running
■ Still investigating this myself, open to suggestions

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OE / YP container support (continued)
● Togán Labs’ Oryx Linux

○ Commercially supported OE based distribution
○ Container support using runc on target
○ https://www.toganlabs.com/oryx-linux/

https://www.toganlabs.com/oryx-linux/

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Examples
● Build bootstrap container

○ Contains the tools to run OE / YP builds, i.e. self-hosting
○ Lighter container version of build-appliance VM image

● Alpine-like container image
○ Attempt to match base contents and size

● Application container image
○ Typical microservice single application

● Nested application sandbox
○ A host image built with container tools and pre-loaded with application container(s)

Build Bootstrap Container Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Quick and dirty with local.conf
MACHINE = “qemux86-64”
IMAGE_FSTYPES = "container"
PREFERRED_PROVIDER_virtual/kernel = "linux-dummy"
IMAGE_LINGUAS_append = " en-us"
CORE_IMAGE_EXTRA_INSTALL += "packagegroup-self-hosted-sdk packagegroup-self-hosted-extended"

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes
● Resulting core-image-minimal for qemux86-64 is ~150 MB
● Builds some graphical packages that go unused
● Further tinkering required to prune out some things
● Lack of post-install scripts means volatile directories (/var/volatile/*, etc.) do

not get created
○ Can run /etc/rcS.d/S37populate-volatile.sh
○ Fixable with ROOTFS_POSTPROCESS or bbappend to base-files and fsperms.txt tweaking

● User for building needs to be created / managed
● Access to build tree needs to be managed

○ Docker volume(s), mounts, etc.

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Image definition: build-container.bb
SUMMARY = "A minimal bootstrap container image"

IMAGE_FSTYPES = "container"

inherit core-image

IMAGE_INSTALL = " \
 packagegroup-core-boot \
 packagegroup-self-hosted-sdk \
 packagegroup-self-hosted-extended \
 ${CORE_IMAGE_EXTRA_INSTALL} \
"

IMAGE_LINGUAS = "en-us"
IMAGE_TYPEDEP_container += "ext4"

Workaround /var/volatile for now
ROOTFS_POSTPROCESS_COMMAND += "rootfs_fixup_var_volatile ; "

rootfs_fixup_var_volatile () {
 install -m 1777 -d ${IMAGE_ROOTFS}/${localstatedir}/volatile/tmp
 install -m 755 -d ${IMAGE_ROOTFS}/${localstatedir}/volatile/log
}

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Convenience MACHINE definition: containerx86-64.conf
require conf/machine/qemux86-64.conf

PREFERRED_PROVIDER_virtual/kernel = "linux-dummy"

MACHINE_ESSENTIAL_EXTRA_RDEPENDS = ""

Alpine-like Container Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Quick and dirty with local.conf
MACHINE = “qemux86-64”
IMAGE_FSTYPES = "container"
PREFERRED_PROVIDER_virtual/kernel = "linux-dummy"
TCLIBC = “musl”

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Resulting image manifest
base-files qemux86_64 3.0.14
base-passwd core2_64 3.5.29
busybox core2_64 1.29.2
busybox-hwclock core2_64 1.29.2
busybox-syslog core2_64 1.29.2
busybox-udhcpc core2_64 1.29.2
eudev core2_64 3.2.5
init-ifupdown qemux86_64 1.0
initscripts core2_64 1.0
initscripts-functions core2_64 1.0
libblkid1 core2_64 2.32.1
libkmod2 core2_64 25+git0+aca4eca103
libuuid1 core2_64 2.32.1
libz1 core2_64 1.2.11
modutils-initscripts core2_64 1.0
musl core2_64 1.1.20+git0+c50985d5c8
netbase core2_64 5.4
packagegroup-core-boot qemux86_64 1.0
sysvinit core2_64 2.88dsf
sysvinit-inittab qemux86_64 2.88dsf
sysvinit-pidof core2_64 2.88dsf
update-alternatives-opkg core2_64 0.3.6
update-rc.d noarch 0.8
v86d qemux86_64 0.1.10

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes
● Resulting core-image-minimal for qemux86-64 is ~4.8 MB

○ ~8.5 MB with package management support via opkg
○ Almost 100 MB with package management support via rpm / dnf

● Further pruning is possible
○ Custom distro configuration
○ Set FORCE_RO_REMOVE to remove update-alternatives, etc. if not using package

management

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Example custom distro configuration: schooner.conf
require conf/distro/poky.conf

DISTRO = "schooner"
DISTRO_NAME = "Schooner"
DISTRO_VERSION = "1.0-${DATE}"
DISTRO_CODENAME = "master"
SDK_VENDOR = "-schoonersdk"

MAINTAINER = "Scott Murray <scott.murray@konsulko.com>"

TARGET_VENDOR = "-schooner"

TCLIBC = "musl"

DISTRO_FEATURES = "acl ipv4 ipv6 largefile xattr ${DISTRO_FEATURES_LIBC}"

VIRTUAL-RUNTIME_dev_manager ?= ""
VIRTUAL-RUNTIME_login_manager ?= ""
VIRTUAL-RUNTIME_init_manager ?= ""
VIRTUAL-RUNTIME_initscripts ?= ""
VIRTUAL-RUNTIME_keymaps ?= ""

Application Container Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Base application image: app-container-image.bb
SUMMARY = "A minimal container image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

IMAGE_FSTYPES = "container"

inherit image

IMAGE_TYPEDEP_container += "ext4"

IMAGE_FEATURES = ""
IMAGE_LINGUAS = ""
NO_RECOMMENDATIONS = "1"

IMAGE_INSTALL = " \
 base-files \
 base-passwd \
 netbase \
"

Workaround /var/volatile for now
ROOTFS_POSTPROCESS_COMMAND += "rootfs_fixup_var_volatile ; "

rootfs_fixup_var_volatile () {
 install -m 1777 -d ${IMAGE_ROOTFS}/${localstatedir}/volatile/tmp
 install -m 755 -d ${IMAGE_ROOTFS}/${localstatedir}/volatile/log
}

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

lighttpd application image: app-container-image-lighttpd.bb
SUMMARY = "A lighttpd container image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

require app-container-image.bb

Note that busybox is required to satisfy /bin/sh requirement of lighttpd,
and the access* modules need to be explicitly specified since RECOMMENDATIONS
are disabled.
IMAGE_INSTALL += " \
 busybox \
 lighttpd \
 lighttpd-module-access \
 lighttpd-module-accesslog \
"

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Resulting image manifest
base-files qemux86_64 3.0.14
busybox core2_64 1.29.2
libattr1 core2_64 2.4.47
libcrypto1.1 core2_64 1.1.1
libpcre1 core2_64 8.42
lighttpd core2_64 1.4.50
lighttpd-module-access core2_64 1.4.50
lighttpd-module-accesslog core2_64 1.4.50
lighttpd-module-dirlisting core2_64 1.4.50
lighttpd-module-indexfile core2_64 1.4.50
lighttpd-module-staticfile core2_64 1.4.50
musl core2_64 1.1.20+git0+c50985d5c8
netbase core2_64 5.4

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

nginx application image: app-container-image-nginx.bb
SUMMARY = "A nginx container image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

require app-container-image.bb

IMAGE_INSTALL += "nginx"

Add /var/log/nginx and /run/nginx
ROOTFS_POSTPROCESS_COMMAND += "rootfs_add_nginx_dirs ; "

rootfs_add_nginx_dirs () {
 install -m 755 -d ${IMAGE_ROOTFS}/${localstatedir}/log/nginx
 install -m 755 -d ${IMAGE_ROOTFS}/run/nginx
}

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes
● bash may get pulled into images because of script detection during packaging
● If the application expects to exec /bin/sh, busybox may need to be added

manually as a dependency
● The lack of post-install scripts means some tweaking may be required to e.g.

create volatile directories

Nested Application Sandbox Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Motivation
● So far we’ve been building container images on their own
● Useful for “docker import” on target, or “docker compose”, etc., then fetching

over the network to target
● What if we wanted to build a container image into a target image for a device?

○ Building factory images for devices running application sandboxes

● Somewhat constrained by tooling
○ Currently only systemd-nspawn seems straightforwardly doable
○ Other systems might be supported by using post-install scripts to import container images

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Approaches
● Simple nesting

○ Based on method outlined by Jérémy Rosen in “Yoctoception: Containers in the embedded
world”:
https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-em
bedded-world-jrmy-rosen

○ Restricted to common MACHINE, DISTRO, TCLIBC configuration

● Multiconfig based approach
○ More flexibility with respect to different configuration between host and container images
○ https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for

-multiple-targets-using-multiple-configurations
○ Caveat that multiconfig dependencies are a recent addition to OE

https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-embedded-world-jrmy-rosen
https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-embedded-world-jrmy-rosen
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for-multiple-targets-using-multiple-configurations
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for-multiple-targets-using-multiple-configurations

Nesting - Simple Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

lighttpd container recipe: app-container-lighttpd.bb
SUMMARY = "Package lighttpd app container image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

DEPENDS = "app-container-image-lighttpd"

FILESEXTRAPATHS_prepend = "${DEPLOY_DIR}/images/${MACHINE}:"

SRC_URI = "file://app-container-image-lighttpd-${MACHINE}.ext4"
SRC_URI[md5sums] = ""

do_fetch[deptask] = "do_image_complete"
do_compile[noexec] = "1"

do_install () {
 install -d ${D}/var/lib/machines
 install ${WORKDIR}/app-container-image-lighttpd-${MACHINE}.ext4 ${D}/var/lib/machines
}

RDEPENDS_${PN} += "systemd-container"

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Host system image: container-host-image.bb
SUMMARY = "A minimal container host image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

inherit core-image

IMAGE_INSTALL = " \
 packagegroup-core-boot \
 app-container-lighttpd \
"

Nesting - Multiconfig Example

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

local.conf
BBMULTICONFIG = "host container"

multiconfig/host.conf
MACHINE = "qemux86-64"
DISTRO_FEATURES_append = " systemd"
DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME_init_manager = "systemd"
VIRTUAL-RUNTIME_initscripts = ""

multiconfig/container.conf
MACHINE = "containerx86-64"
DISTRO = "schooner"
TMPDIR = "${TOPDIR}/tmp-container"

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

lighttpd container recipe: app-container-lighttpd-multiconfig.bb
SUMMARY = "Package lighttpd app container image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

do_compile[noexec] = "1"

do_install[mcdepends] =
"multiconfig:host:container:app-container-image-lighttpd:do_image_complete"

do_install () {
 install -d ${D}/var/lib/machines
 install ${TOPDIR}/tmp-container/${DEPLOY_DIR_IMAGE}/app-container-image-lighttpd.ext4 \
 ${D}/var/lib/machines
}

RDEPENDS_${PN} += "systemd-container"

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Host system image: container-host-image-multiconfig.bb
SUMMARY = "A minimal container host image"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da9cfbcb788c80a0384361b4de20420"

inherit core-image

IMAGE_INSTALL = " \
 packagegroup-core-boot \
"

do_image[mcdepends] = "multiconfig:host:container:app-container-image-lighttpd:do_image_complete"

ROOTFS_POSTPROCESS_COMMAND += "rootfs_install_container ; "

rootfs_install_container () {
 install -d ${IMAGE_ROOTFS}/${localstatedir}/lib/machines
 install ${TOPDIR}/tmp-container/deploy/images/${MACHINE}/app-container-image-lighttpd-${MACHINE}.ext4 \
 ${IMAGE_ROOTFS}/${localstatedir}/lib/machines
}

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes
● I hit a couple of multiconfig issues experimenting that need some investigation

○ Had to change TMPDIR when TCLIBC differed between host and container configs
○ multiconfig dependency works when used in an image recipe per documentation, but currently

seems a bit fragile, saw failures in non-image recipe

● multiconfig shows a lot of promise due to the flexibility it gives

Questions?

