Building Container Images with
OpenEmbedded and the Yocto Project

Scott Murray

scott.murray@konsulko.com

Konsulko

mailto:scott.murray@konsulko.com

About Me

Linux user/developer since 1996
Embedded Linux developer starting in 2000
Principal Software Engineer at Konsulko Group

Konsulko Group
o Services company specializing in Embedded Linux and Open Source Software
o Hardware/software build, design, development, and training services.
o Based in San Jose, CA with an engineering presence worldwide
o https://konsulko.com

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

https://konsulko.com

Agenda

Quick overview of OpenEmbedded / Yocto Project
Containers
What can OE bring to the table?

Example OE container build configurations
o Full distribution and application containers
o Nesting images (pre-installed application sandboxes)

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Caveats

e | am not a container expert, and this presentation does not cover the
mechanics of using the discussed container images in detail

e Container technology is progressing rapidly, it's entirely possible I've missed
something of interest (Please let me know!)

e An intermediate level of OpenEmbedded / Yocto Project knowledge is

assumed

******** Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OpenEmbedded & The Yocto Project

e OpenEmbedded (OE) is a build system and associated metadata to build
embedded Linux distributions.

e The Yocto Project (YP) is a collaboration project founded in 2010 to aid in the
creation of custom Linux based systems for embedded products. It is a
collaboration of many hardware and software vendors, and uses
OpenEmbedded as its core technology. A reference distribution called “poky”
(pock-EE) built with OE is provided by the Yocto Project to serve as a starting
point for embedded developers.

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notable OE / YP Features

Broad CPU architecture support

Strong vendor support

Highly customizable, layered configuration metadata

Focus on constrained embedded devices, so support for small images
Regular release schedule

Integrated license and source publishing compliance tools

Working towards full binary reproducibility

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Containers

e Operating system level virtualization as opposed to virtual machines
e Linux implementations typically are based on nhamespaces and cgroups

o LXC
o Docker
O runc

o systemd-nspawn
e Newer Clear / Kata containers are based on lightweight VM technology
e Container images can be full Linux distribution installs, or small images
containing a single application and its dependencies

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Containers (continued)

e Common use cases:
o Running an application that has incompatible dependencies from the host machine
o Sandboxing an application to isolate it from the host machine
o Implementing microservices where application containers are started based on demand

e Typical container construction
o Start with a minimal Debian, Ubuntu, or Alpine Linux image
o Add required packages
o Potentially compile non-upstream available packages (e.g. via Dockerfile commands)
o Prune container down by removing unneeded files
m Small size is very desirable
m Reduces security attack surface, maintenance, and migration time

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Container Drawbacks?

e Reproducibility
o Base containers changes may not be obvious, e.g Docker labels may change
o Package versions on Debian, Alpine, etc. changing
m It's not uncommon to see “apt-get update && apt-get upgrade -y”, etc. in Dockerfiles
m Pinning package versions can break if the base distro doesn’t archive older versions
o Even if automating with Dockerfile(s) or other scripting, effort required to ensure result is
reproducible
e Transparency / Security
o You have to trust the builders of the base container
o Security is dependent on the providers of the base container, i.e. distribution update policies
o Often quoted problem of library updates potentially affecting many containers

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Container Drawbacks? (continued)

e License compliance scheme
o Potentially can be pulled from package manager, but no particularly turn-key solutions
e Customization

o Patching a package or tweaking its configuration flags requires manual or scripted rebuild
o Building for an unsupported architecture requires delving into the distribution’s build process

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So is OE / YP a solution?

e Reproducibility
o Image builds can be straightforwardly reproduced using fixed metadata
e Transparency / Security
o Entire build process is bootstrapped from scratch
o Typically 18 months support per release versus 5 years for Debian stable, ~2 years for Alpine
e License compliance scheme
o Image license manifests and license text archiving
o Source archiving
e Customization

o Layered metadata and build process allows adding almost any customization
o Any architecture with a BSP layer can be targeted

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

So is OE / YP a solution? (continued)

e Package availability
o Debian, Ubuntu several 10’s of K, Alpine ~5K
o OE ~2300 in oe-core and meta-openembedded, many more in other layers
o OE node.js and Python module availability is not as broad

e FEase of use
o It's possible, but quite involved to reproduce something like the apt-get, apk install user
experience with an OE built package feed
o Small, relatively fixed content images are going to be easier to handle
e Resources

o OE is a new toolset to learn
o Building images can require significant hardware resources
o Long term maintenance may involve dedicating resources

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OE / YP container support

e Container image type

Added in pyro / 2.3 release

IMAGE_FSTYPES = “container”

Produces a tar.bz2 with no kernel components or post-install scripts
Required PREFERRED_PROVIDER virtual/kernel to be set to “dummy”

e meta-virtualization layer

o Provides
m LXC, runc, Docker (currently 18.03.0 in master/thud and sumo branches)
m OCI image-tools
m Kernel configuration fragments for linux-yocto

o Currently no support for building OCI / Docker images during OE build
m Difficult with Docker itself, since it needs its daemon running
m Still investigating this myself, open to suggestions

O O O O

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

OE / YP container support (continued)

e Togan Labs’ Oryx Linux
o Commercially supported OE based distribution
o Container support using runc on target
o hitps://www.toganlabs.com/oryx-linux/

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

https://www.toganlabs.com/oryx-linux/

Examples

e Build bootstrap container
o Contains the tools to run OE / YP builds, i.e. self-hosting
o Lighter container version of build-appliance VM image

e Alpine-like container image
o Attempt to match base contents and size

e Application container image
o Typical microservice single application

e Nested application sandbox
o A host image built with container tools and pre-loaded with application container(s)

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Build Bootstrap Container Example

Quick and dirty with local.conf

MACHINE = “gemux86-64"

IMAGE FSTYPES = "container"
PREFERRED PROVIDER virtual/kernel = "linux-dummy"
IMAGE LINGUAS append = " en-us"

CORE IMAGE EXTRA INSTALL += "packagegroup-self-hosted-sdk packagegroup-self-hosted-extended"

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes

Resulting core-image-minimal for gemux86-64 is ~150 MB

Builds some graphical packages that go unused

Further tinkering required to prune out some things

Lack of post-install scripts means volatile directories (/var/volatile/*, etc.) do

not get created

o Can run /etc/rcS.d/S37populate-volatile.sh
o Fixable with ROOTFS POSTPROCESS or bbappend to base-files and fsperms.txt tweaking

e User for building needs to be created / managed

e Access to build tree needs to be managed
o Docker volume(s), mounts, etc.

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Image definition: build-container.bb

SUMMARY = "A minimal bootstrap container image"
IMAGE FSTYPES = "container"
inherit core-image

IMAGE INSTALL = " \
packagegroup-core-boot \
packagegroup-self-hosted-sdk \
packagegroup-self-hosted-extended \
${CORE_IMAGE EXTRA INSTALL} \

IMAGE LINGUAS = "en-us"
IMAGE TYPEDEP container += "ext4"

Workaround /var/volatile for now
ROOTFS POSTPROCESS COMMAND += "rootfs fixup var volatile ; "

rootfs fixup var volatile () {
install -m 1777 -d ${IMAGE ROOTFS}/${localstatedir}/volatile/tmp
install -m 755 -d ${IMAGE ROOTFS}/S${localstatedir}/volatile/log
}

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Convenience MACHINE definition: containerx86-64.conf

require conf/machine/gemux86-64.conf
PREFERRED PROVIDER virtual/kernel = "linux-dummy"

MACHINE ESSENTIAL EXTRA RDEPENDS = ""

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Alpine-like Container Example

Quick and dirty with local.conf

MACHINE = “gemux86-64"

IMAGE FSTYPES = "container"
PREFERRED_PROVIDER_Virtual/kernel = "linux-dummy"
TCLIBC = “musl”

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Resulting image manifest

base-files gemux86 64 3.0.14
base-passwd core2 64 3.5.29

busybox core2 64 1.29.2
busybox-hwclock coreZ2 64 1.29.2
busybox-syslog core2 64 1.29.2
busybox-udhcpc core2 64 1.29.2

eudev core2 64 3.2.5

init-ifupdown gemux86 64 1.0
initscripts core2 64 1.0
initscripts-functions core2 64 1.0
libblkidl core2 64 2.32.1

libkmod2 core2 64 25+gitO+acadecall3
libuuidl core2 64 2.32.1

libzl core2 64 1.2.11
modutils-initscripts core2 64 1.0
musl core2 64 1.1.20+git0+c50985d5c8
netbase core2 64 5.4
packagegroup-core-boot gemux86 64 1.0
sysvinit core2 64 2.88dsf
sysvinit-inittab gemux86 64 2.88dsf
sysvinit-pidof core2 64 2.88dsf
update-alternatives-opkg core2 64 0.3.6
update-rc.d noarch 0.8

v86d gemux86 64 0.1.10

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes

e Resulting core-image-minimal for gemux86-64 is ~4.8 MB
o ~8.5 MB with package management support via opkg
o Almost 100 MB with package management support via rom / dnf
e Further pruning is possible
o Custom distro configuration
o Set FORCE_RO_REMOVE to remove update-alternatives, etc. if not using package
management

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Example custom distro configuration: schooner.conf

require conf/distro/poky.conf

DISTRO = "schooner"

DISTRO NAME = "Schooner"

DISTRO VERSION = "1.0-${DATE}"

DISTRO_CODENAME = "master"

SDK_VENDOR = "-schoonersdk"

MAINTAINER = "Scott Murray <scott.murray@konsulko.com>"

TARGET VENDOR = "-schooner"

TCLIBC = "musl"

DISTRO FEATURES = "acl ipv4 ipv6 largefile xattr ${DISTRO_FEATURES LIBC}"

VIRTUAL-RUNTIME dev manager 2= ""
VIRTUAL-RUNTIME login manager 2= ""
VIRTUAL-RUNTIME init manager 2= ""
VIRTUAL-RUNTIME initscripts 2= ""
VIRTUAL-RUNTIME keymaps 2= ""

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Application Container Example

Base application image: app-container-image.bb

SUMMARY = "A minimal container image"
LICENSE = "MIT"
LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3dal%cfbcb788c80a0384361b4de20420"

IMAGE FSTYPES = "container"
inherit image
IMAGE TYPEDEP container += "ext4"

IMAGE FEATURES = ""
IMAGE LINGUAS = ""
NO_ RECOMMENDATIONS = "1"

IMAGE INSTALL = " \
base-files \
base-passwd \
netbase \

Workaround /var/volatile for now
ROOTFS POSTPROCESS COMMAND += "rootfs_fixup_var_volatile ;0"

rootfs fixup var volatile () {
install -m 1777 -d ${IMAGE ROOTFS}/${localstatedir}/volatile/tmp
install -m 755 -d ${IMAGE_ROOTFS}/${localstatedir}/volatile/log
}

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

lighttpd application image: app-container-image-lighttpd.bb

SUMMARY = "A lighttpd container image"
LICENSE = "MIT"
LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"

require app-container-image.bb

Note that busybox is required to satisfy /bin/sh requirement of lighttpd,
and the access* modules need to be explicitly specified since RECOMMENDATIONS
are disabled.
IMAGE INSTALL += "o\
busybox \
lighttpd \
lighttpd-module-access \
lighttpd-module-accesslog \

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Resulting image manifest

base-files gemux86 64 3.0.14

busybox core2 64 1.29.2

libattrl core2 64 2.4.47

libcryptol.l core2 64 1.1.1

libpcrel core2 64 8.42

lighttpd core2 64 1.4.50
lighttpd-module-access core2 64 1.4.50
lighttpd-module-accesslog coreZ2 64 1.4.50
lighttpd-module-dirlisting core2 64 1.4.50
lighttpd-module-indexfile core2 64 1.4.50
lighttpd-module-staticfile core2 64 1.4.50
musl core2 64 1.1.20+git0+c50985d5c8
netbase core2 64 5.4

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

nginx application image: app-container-image-nginx.bb

SUMMARY = "A nginx container image"
LICENSE = "MIT"
LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"

require app-container-image.bb
IMAGE INSTALL += "nginx"

Add /var/log/nginx and /run/nginx
ROOTFS_ POSTPROCESS COMMAND += "rootfs add nginx dirs ; "

rootfs add nginx dirs () {
install -m 755 -d S${IMAGE ROOTFS}/${localstatedir}/log/nginx
install -m 755 -d ${IMAGE ROOTFS}/run/nginx

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes

e bash may get pulled into images because of script detection during packaging
e If the application expects to exec /bin/sh, busybox may need to be added

manually as a dependency
e The lack of post-install scripts means some tweaking may be required to e.g.
create volatile directories

******** Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Nested Application Sandbox Example

Motivation

e So far we've been building container images on their own
e Useful for “docker import” on target, or “docker compose”, etc., then fetching
over the network to target

e \What if we wanted to build a container image into a target image for a device?
o Building factory images for devices running application sandboxes
e Somewhat constrained by tooling

o Currently only systemd-nspawn seems straightforwardly doable
o Other systems might be supported by using post-install scripts to import container images

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Approaches

e Simple nesting
o Based on method outlined by Jérémy Rosen in “Yoctoception: Containers in the embedded

world”:
https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-em

bedded-world-jrmy-rosen
o Restricted to common MACHINE, DISTRO, TCLIBC configuration

e Multiconfig based approach
o More flexibility with respect to different configuration between host and container images
o hitps://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for
-multiple-targets-using-multiple-configurations
o Caveat that multiconfig dependencies are a recent addition to OE

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-embedded-world-jrmy-rosen
https://www.slideshare.net/ennael/embedded-recipes-2018-yoctoception-containers-in-the-embedded-world-jrmy-rosen
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for-multiple-targets-using-multiple-configurations
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#dev-building-images-for-multiple-targets-using-multiple-configurations

Nesting - Simple Example

lighttpd container recipe: app-container-lighttpd.bb

SUMMARY = "Package lighttpd app container image"

LICENSE = "MIT"

LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"
DEPENDS = "app-container-image-lighttpd"

FILESEXTRAPATHS prepend = "${DEPLOY DIR}/images/${MACHINE}:"

SRC URI = "file://app-container-image-lighttpd-${MACHINE}.ext4"

SRC URI[mdSsums] = ""

do fetchl[deptask] = "do image complete"
do compile[noexec] = "1"
do install () {

install -d ${D}/var/lib/machines
install S${WORKDIR}/app-container-image-lighttpd-${MACHINE}.ext4 ${D}/var/lib/machines

RDEPENDS ${PN} += "systemd-container"

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Host system image: container-host-image.bb

SUMMARY = "A minimal container host image"
LICENSE = "MIT"
LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"

inherit core-image

IMAGE INSTALL = " \
packagegroup-core-boot \
app-container-lighttpd \

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Nesting - Multiconfig Example

local.conf

BBMULTICONFIG = "host container"

multiconfig/host.conf

MACHINE = "gemux86-64"

DISTRO FEATURES append = " systemd"

DISTRO FEATURES BACKFILL CONSIDERED = "sysvinit"
VIRTUAL-RUNTIME init manager = "systemd"
VIRTUAL-RUNTIME initscripts = ""

multiconfig/container.conf

MACHINE = "containerx86-64"
DISTRO = "schooner"
TMPDIR = "${TOPDIR}/tmp-container"

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

lighttpd container recipe: app-container-lighttpd-multiconfig.bb

SUMMARY = "Package lighttpd app container image"

LICENSE = "MIT"

LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"
do compile[noexec] = "1"

do install[mcdepends] =
"multiconfig:host:container:app-container-image-lighttpd:do image complete"

do_install () {
install -d ${D}/var/lib/machines
install ${TOPDIR}/tmp-container/${DEPLOY DIR IMAGE}/app-container-image-lighttpd.ext4 \
${D}/var/lib/machines
}

RDEPENDS ${PN} += "systemd-container"

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Host system image: container-host-image-multiconfig.bb

SUMMARY = "A minimal container host image"
LICENSE = "MIT"
LIC FILES CHKSUM = "file://${COREBASE}/meta/COPYING.MIT;md5=3da%cfbcb788c80a0384361b4de20420"

inherit core-image

IMAGE INSTALL = " \
packagegroup-core-boot \

do image[mcdepends] = "multiconfig:host:container:app-container-image-lighttpd:do image complete"
ROOTFS_ POSTPROCESS COMMAND += "rootfs install container ; "
rootfs install container () {

install -d S${IMAGE ROOTFS}/S${localstatedir}/lib/machines

install ${TOPDIR}/tmp-container/deploy/images/${MACHINE}/app-container-image-lighttpd-${MACHINE}.ext4d \
$S{IMAGE ROOTFS}/${localstatedir}/lib/machines

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Notes

e | hit a couple of multiconfig issues experimenting that need some investigation
o Had to change TMPDIR when TCLIBC differed between host and container configs
o multiconfig dependency works when used in an image recipe per documentation, but currently
seems a bit fragile, saw failures in non-image recipe

e multiconfig shows a lot of promise due to the flexibility it gives

Konsulko

Copyright 2018 Konsulko Group CC BY-SA 3.0 US

Questions?

