
Linux Generic
Clock Framework

Embedded Linux Conference – Europe 2009
Grenoble, Oct 16th 2009

Francesco Virlinzi
Senior software engineer

STMicroelectronics
francesco.virlinzi@st.com

www.stlinux.com

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

Agenda:
• Current status

• The Linux Generic Clock Framework (GCF) and its features

• The data structures used in the GCF

• Overview of clock and device state machines, description of final
transaction state machine

• How the transaction graph is built

• How the devices and the drivers are involved in the clk transaction

• Future works

• Conclusions

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[3/35]

• Power management is becoming one of the most important issue in
embedded systems

– Dynamic power consumption is linear with respect to clock frequency

• Clocks are shared resources in the ST System On Chip
– From 8 clks in the stx7100 [2005] up to 18 clks in the stx7111 [2007] (36 clks in the stx7108 [2009])

• Linux does not have a sufficiently powerful clock framework
– Linux has only a generic API (<include/linux/clk.h>)

• A lot of architectures create 'ad-hoc' clock frameworks...

Current status [1/2]

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[4/35]

Current status [2/2]

Unfortunately:

• Several 'arch' clock frameworks fail to involve the devices during
a clock operations

• None of the current 'arch' clock framework are integrated into
the Linux Device Model

•Any clock change may break a working device

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[5/35]

• Written to be arch independant

• Integrated into the Linux Device Model
– there is no clk_register_device(..)

• Provides sysfs interface; the user can
– navigate /sys/clocks/... to analyse the status of clock tree;
– check which devices are using any given clock

• Involves the platform_devices during the clock rate propagation

• Uses current Linux API

The Linux Generic Clock Framework features

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[6/35]

Clocks, ... [1/3]

struct clk {
struct kobject kobj;
struct kobject *kdevices;
int id;
const char *name;
struct module *owner;
struct clk *parent;
struct clk_ops *ops;
void *private_data;
unsigned long rate;
unsigned long flags;
unsigned long nr_active_clocks;
unsigned long nr_active_devices;
unsigned long nr_clocks;

void *towner;
struct klist childs;
struct klist devices;
struct klist_node node;
struct klist_node child_node;

};

Each physical clock is managed
through 'struct clk' object which tracks:

• The clock relationship
• The clock-devices relationship
• How many child clocks are active
• How many child devices are active
• If the clock is undergoing

transaction

Each clock is registered through
clk_register() (or early in the boot
through early_clk_register())

Used during runtime

Used to manage the relationship

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[7/35]

..., Clock Operations and … [2/3]

struct clk_ops {
int (*init)(struct clk *);
int (*enable)(struct clk *);
int (*disable)(struct clk *);
int (*set_rate)(struct clk *, unsigned long value);
int (*set_parent)(struct clk *clk, struct clk *parent);
void (*recalc)(struct clk *);
unsigned long (*round)(struct clk *, unsigned long value);
unsigned long (*eval)(struct clk *, unsigned long parent_rate);
void (*observe)(struct clk *, void *);
unsigned long (*measure)(struct clk *);

};

Each clock defines the operations it supports using a set of SOC
specific callback collected in the struct clk_ops.

Those are the entry points for any hardware access.

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[8/35]

… and Platform_objects [3/3]

struct platform_device {
 ...
#ifdef CONFIG_GENERIC_CLK_FM

unsigned long clk_flags;
unsigned long num_clks;
struct pdev_clk_info *clks;

#endif
 };

struct pdev_clk_info {
struct platform_device *pdev;
struct clk *clk;
struct klist_node node;

};

struct platform_driver {
 ...
#ifdef CONFIG_GENERIC_CLK_FM

int (*notify)(unsigned long code,
struct platform_device *, void *);
#endif
 };

Each platform_device can declare
'how many' and 'which' clocks it
uses through the struct
pdev_clk_info.

The platform_driver has a new
callback to notify:

• devices undergoing clock
 transaction to the driver;
• the clock environment the device
 will have

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[9/35]

A tipical usage mode

static struct platform_device asc_device = {
.name = "stasc",
...
.num_clks = 1,
.clks = (struct pdev_clk_info []) {

{
.clk = &clk_IC_IF_100,

},
},

};

All the devices are bound to the clock in setup-SOC.c file

... and in the driver....

static struct platform_driver asc_serial_driver = {
 .probe = asc_serial_probe,
 .remove = __devexit_p(asc_serial_remove),
 .driver = {
 .name = DRIVER_NAME,
 .owner = THIS_MODULE,

...
 },
 .notify = asc_notify,
};

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[10/35]

During runtime...

root@mb618:/sys/clocks/clkgena_clk_osc/clkgena_pll1_clk/ic_if_100# ls
clk_attribute devices module_clk

root@mb618:/sys/clocks/clkgena_clk_osc/clkgena_pll1_clk/ic_if_100# ls devices/
stasc.0 stasc.1 lirc_stm i2c_st.0 i2c_st.1 spi_st.0 spi_st.1

root@mb618:/sys/clocks/clkgena_clk_osc/clkgena_pll1_clk/ic_if_100# ls clk_attribute
control parent rate state

root@mb618:/sys/clocks/clkgena_clk_osc/clkgena_pll1_clk/ic_if_100# cat clk_attribute/rate
100000000

root@mb618:/sys/clocks/clkgena_clk_osc/clkgena_pll1_clk/ic_if_100# cat clk_attribute/state
clock name: ic_if_100
 + enabled
 + rate writable
 + allow_propagation
 + nr_clocks: 1
 + nr_active_clocks: 1
 + nr_active_devices: 4
 + rate: 100000000

The Generic Linux Clock framework has a sysfs interface to provide a lot
of information about each clock

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[11/35]

Clock operation and clock transaction

• Every clock operation is seen as a clock
transaction

• The main actors during the transaction are:
– clocks
– devices

• The clock framework is able to:
– Ensure the correct evolution for clocks
– Ensure the correct evolution for devices

• The devices can check the clk
environment they will have at the end of a
transaction

• Ensure the correct device integrity

ca

cb cc

cd ce

dev1 dev2

A generic clock tree:

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[12/35]

• Clock not undergoing transaction are in
normal state;

• During an operation a clock can be either
in:
– enter state: where the clock is locked

and the transaction graph is built
– change state: where the clock is

changed
– exit state: where the transaction

memory is freed and the clock is
unlocked

normal
normal

enter
enter

Change
Change

exit
exit

Error

Clk transaction: Clock state machine evolution

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[13/35]

Clk transaction: Device state machine evolution

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

• Devices not undergoing transaction are in
normal state;

• During an operation a devices can be either in:
– enter_change state: where they can accept

the clock change
– pre_change state: where they could be

suspended
– post_change state: where they could be

resumed
– exit_change state: where they are aware

the transaction is completed

Error

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[14/35]

Clk transaction: Building the final fsm [0/7]

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

The system is running and
No transaction is ongoing

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[15/35]

Clk transaction: Building the final fsm [1/7]

On a clock operation (i.e.: clk_set_rate(...)) the
transaction begins;

The GCF:
• acquires all the clocks it needs.
• creates the sub node transaction and evaluates all

the clock rates.

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[16/35]

Clk transaction: Building the final fsm [2/7]

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Dev
enter

Dev
enter

The GCF notifies all devices about the on going
transaction and checks if they agree to the new
clock settings

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[17/35]

Clk transaction: Building the final fsm [3/7]

The GCF notifies the
devices the framework is
going to change the clocks
then if required the GCF
suspends the devices

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
change

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[18/35]

Clk transaction: Building the final fsm [4/7]

The GCF changes all the
clocks

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Clk
Change

Clk
Change

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
change

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[19/35]

Clk transaction: Building the final fsm [5/7]

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Clk
Change

Clk
Change

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
changeDev Post

change

Dev Post
change

The GCF notifies the
devices the clocks have
changed, then if
required the GCF
resumes the devices

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[20/35]

Clk transaction: Building the final fsm [6/7]

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Clk
Change

Clk
Change

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
change

Dev
exit

Dev
exit

Dev Post
change

Dev Post
change

Each device is
aware all the
other devices
were resumed
and fully running

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[21/35]

Clk transaction: Building the final fsm [7/7]

The transaction is
complete.
The clocks and
memory are released.

normal
normal

enter
enter

Change
Change

exit
exit

normal
normal

enter
enter

Pre
change

Pre
change

exit
exit

Post
change

Post
change

normal
normal

clk
enter

clk
enter

Clk
Change

Clk
Change

Clk exit
Clk exit

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
change

Dev
exit

Dev
exit

Dev Post
change

Dev Post
change

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[22/35]

Clk Framework Transaction Evolution

normal
normal

clk
enter

clk
enter

Clk
Change

Clk
Change

Clk exit
Clk exit

Dev
enter

Dev
enter

Dev Pre
change

Dev Pre
change

Dev
exit

Dev
exit

Dev Post
change

Dev Post
change

The transaction State machine
provides seven states to cover
both the clock and device
requirement.

The 'clk' states are not visible to
the devices and are managed
internally to the framework.

Error

Error

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[23/35]

From clock graph to a transaction graph [1/2]
• The Transaction graph (usually) follows

the clock hierarchy.
• It's built during the clk_enter state
• Each clock is marked by the node owner
• Each node can manage more than one

clock
• Only the root node is on the process

stack all the children are built dynamically

t_0

t_1

t_2t_3

clk_a

clk_b

clk_d

clk_c

clk_e clk_f

clk_a old_fa new_fa

clk_f old_ff new_ff

clk_b old_fb new_fb

clk_c old_fc new_fc

clk_d old_fd new_fd

clk_e old_fe new_fe

clk_set_rate(clk_a, xxx);

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[24/35]

From clock graph to a transaction graph [2/2]

• The new function clk_set_rates
can change more that one clock in a
single transaction.

• The transaction graph is built
according to the involved clocks

t_0

t_2t_1

clk_a

clk_b

clk_d

clk_c

clk_e clk_f

clk_b old_fb new_fb
clk_c old_fc new_fc

clk_f old_ff new_ff
clk_d old_fd new_fd

clk_e old_fe new_fe

clk_set_rates(**clks, *rates);

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[25/35]

Device driver point of view [1/3]
Only 4 clock transaction
states are visible to the
device drivers.

The information in the
transaction graph is used to
build an ad-hoc clk_event
array for each device.

The .notify callback (in the
platform_driver) is used to
notify the driver of state
machine evolution.

.notify(CLK_ENTER_CHANGE,...)

Accepted?

.notify(CLK_PRE_CHANGE,...)

.notify(CLK_POST_CHANGE,...)

.notify(CLK_EXIT_CHANGE,...)

.notify(CLK_ENTER_CHANGE,...)

No

Yes

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[26/35]

Device driver point of view [2/3]

The GCF uses .notify return value to:

• check whether the device accepts or not the clock operation

• suspend and/or resume the device as requested

Notified clk fsm code
CLK_ENTER_
CHANGE

CLK_PRE_
CHANGE

CLK_POST_
CHANGE

CLK_EXIT_
CHANGE

.notify
return
value

NOTIFY_EVENT
_HANDLED

Accept Suspend
the device

Resume the
device

No action

NOTIFY_EVENT
_NOTHANDLED

Refuse No action No action No action

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[27/35]

Device driver point of view [3/3]
int asc_notify(unsigned long code, struct platform_device *pdev, void *data)
{

struct clk_event *event = (struct clk_event *)data;
switch (code) {
case NOTIFY_CLK_ENTERCHANGE:

return NOTIFY_EVENT_HANDLED; /* to accept */
case NOTIFY_CLK_PRECHANGE:

if (!event->old_rate && event->new_rate) /* clk enable*/
return NOTIFY_EVENT_NOTHANDLED;

return NOTIFY_EVENT_HANDLED; /* to suspend */
case NOTIFY_CLK_POSTCHANGE:

if (event->old_rate && !event->new_rate) /* clk disable */
return NOTIFY_EVENT_NOTHANDLED;

return NOTIFY_EVENT_HANDLED; /* to resume */
case NOTIFY_CLK_EXITCHANGE:

return NOTIFY_EVENT_HANDLED;
}
return NOTIFY_EVENT_HANDLED;

}

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[28/35]

Future works [1/5]

Several areas can be investigated:

• Integration with PM_runtime kernel subsystem:
– Inside the clk transaction for safer clk propagation;
– Outside the clk transaction to manage clocks on the fly;

• Add device constraints:
– To fine-tune clock rates

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[29/35]

PM_Runtime

Clk Framework

Future works [2/5]

.notify(CLK_ENTER_CHANGE,...)

Accepted?

.notify(CLK_PRE_CHANGE,...)

.notify(CLK_POST_CHANGE,...)

.notify(CLK_EXIT_CHANGE,...)

.notify(CLK_ENTER_CHANGE,...)

Suspend?

Yes

Resume?

Yes

Yes

pm_runtime_suspend(...)

pm_runtime_resume(...)

To guarantee safer clock
operations, the PM_runtime
support can be used to
suspend/resume the device
undergoing clock
transaction.

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[30/35]

Clk Framework

Future works [3/5]
When a device is suspended,
GCF turns-off the clock (if
possible)

pm_runtime_suspend(...){
...

dev->pm->runtime_suspend(...);
...

clk_pm_runtime_notify(...);
}

--(clk->nr_active_devices);

No more users? Yes clk_disable(clk);

return

No

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[31/35]

Clk Framework

Future works [4/5]
When a device is resumed, the GCF
turn-on the clock (if required)

pm_runtime_resume(...){
...

clk_pm_runtime_notify(...);
...

dev->pm->runtime_resume(...);
}

++clk->nr_active_devices;

First users?
Yes

clk_enable(clk);

return

No

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[32/35]

Future works [5/5]

Device constraints:

• A new dev_clk_constraint object could be added to each device to
define the operating

• frequency range and/or
• fixed frequency

• To reduce power consumption, for each clock, the GCF can evaluate
and set the lowest frequency based on the currently active devices.

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[33/35]

Clk API: mainly from <linux/clk.h>

int clk_register(struct clk *clk);

int clk_unregister(struct clk *clk);

int clk_enable(struct clk *clk);

int clk_disable(struct clk *clk);

int clk_get_rate(struct clk *clk);

int clk_set_rate(struct clk *clk, unsigned long rate);

int clk_set_parent(struct clk *clk, struct clk *pclk);

int clk_set_rates(struct clk **clk, unsigned long *rate);

int clk_for_each(int (*fn)(struct clk *, void *), void *);

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[34/35]

Conclusions:

• The GCF runs on both 2.6.23 and 2.6.30 kernel;

• Uses the Linux API;

• No code in the GCF uses arch specific features;

• Involves the devices and the drivers in the clk propagation;

• New .notify function easy to implement;

The Linux Generic Clock Framework – Francesco Virlinzi @ STMicroelectronics – ELC - E. 2009

[35/35]

The Linux Generic Clock Framework

Thanks !
Q & A

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35

