
Vitaly Wool, Konsulko Group

Secure updates for memory-
constrained XIP system

About me

q Has been with embedded Linux
since 2003

q Worked for MontaVista

q Currently living in Sweden
(Skåne)

q Staff Engineer at Konsulko Group

q Managing Director at Konsulko
AB

About this presentation

q What’s OTA

q What’s XIP

q OTA and XIP
§ And memory constraints

q Conclusions

What’s OTA?

OTA / FOTA

q [Firmware] Over-The-Air update
§ No need to physically connect device being updated

q Widely used for mobile devices and routers
§ NB: infamous router updates

q Coming to automobiles, IoT devices etc.
§ Non-OTA update would require a service visit

§ E. g. driving to car service center

§ …or a visiting technician
§ Some IoT devices may be far away or hard to access

FOSS OTA updaters

q OSTree (libostree)
§ Used by AGL, Fedora

q swupdate
§ Partial OE integration

q RAUC
§ Good OE integration

q update_engine
§ Used by Android

OTA updater requirements

q Fail-safe
§ No “partial updates”

q Recoverable: rollback to a previous software state
§ Basically implies having 2 versions of software
§ Sometimes not possible due to size limitations

q Capable of updating all software / firmware
§ Bootloader, kernel, root file system, data

q Secure
§ Update package authenticity and integrity

OTA classification 1

OTA
Updater method

Single copy
With rescue partition

Update process

Double copy
A/B update

Update process

Boot SWUAPP SW Boot APP SW A APP SW B

OTA classification 2

OTA

Updater execution

No reboot
required

Called from userspace

userspace

Ordinary Application

Trustzone

Trusted application

Reboot
required
Scheduled on reboot

Special
kernel/ramdisk bootloader

Double-copy OTA

Double
copy OTA

Self-
recovery

RAM
constraints

Security

What’s XIP?

XIP: execute in place

q Code executed directly from persistent storage
§ Typically NOR flash

§ QSPI

q XIP kernel
§ Option selected at compile time

q XIP userspace
§ Requires a special filesystem

§ Cramfs (legacy), AXFS

Kernel XIP

Bootloader Kernel A Kernel B

Application FS A Application FS B

Data

QSPI

NAND

Traditional XIP design (userspace can be anywhere)

Kernel/Userspace XIP

Bootloader Kernel A Kernel B

Application FS A

Data

QSPI

NAND

Application FS B

More expensive design but we do save on RAM

XIP advantages

q Less RAM needed
§ Usually up to 10x smaller RAM footprint
§ Sometimes no RAM at all is needed

q Lower idle power consumption
§ May be crucial for IoT running on battery

q Shorter boot time
§ No copy on boot

q Faster execution
§ QSPI flash

XIP obstacles

q You can’t write to flash and execute from it at the same time

q However, you write to flash using special tricks
§ Code copied/executed from RAM

§ No other code may be executed during that time

q XIP requires more space on flash storage
§ At least kernel code can not be compressed

q All addresses are defined at compile time
§ Which may be a security compromise

OTA and XIP

OTA and XIP: Same goals…

XIP

Smaller
footprint

Remote IoT

Easy
maintenance

OTA

Faster boot

Automotive

Convenient and
cost effective

OTA

…sharper underwater rocks

q Fail-safety is crucial
§ Easier to brick device

§ Possible security breaches

q Memory-constrained system
§ Integral update image may not fit

q That calls for a double-copy mechanism

q We’ll show that existing double-copy are no good with XIP

RAM disk (initrd) OTA

Userspace

Boot loader

OTA
?

Updater (initrd)

RAM

q Single copy

q Will it work with XIP?
§ updater can occupy userspace / kernel data area

q Requires the whole update image to fit in memory

Bootloader OTA

q Basically the same as initrd, but updater is in the bootloader
§ Likely to consume less space

q Very “thick” bootloader
§ [part of] bootloader should run from RAM

§ Should be aware of system internals

§ Harder to debug

§ Less secure

q Will it work with XIP?

Userspace OTA

q Simple in non-XIP case
§ update inactive

kernel/application
partitions

§ Verify, mark as active
and reboot

Userspace A

Updater

Flash

Kernel A

Kernel B Userspace B

q Kernel A can not execute during Kernel B update
§ Interrupts and preemption must be disabled during update

q Userspace may be XIP too
§ Updater should be copied to RAM with all the libraries it would use

Trustzone OTA (ARM)

Secure monitor

Linux kernel

App 1 Updater

Trusted OS

Real
updater

RAM

Conclusions

q XIP can add value to OTA solutions
§ But it adds complexity, too

q XIP puts certain requirements on updaters

q Existing FOSS updaters don’t play together well with XIP

q Secure updates with trusted application work well with XIP
§ But there are no known FOSS solution for that yet

Questions?

Vitaly.Wool@konsulko.com

