Secure updates for memoryconstrained XIP system

Vitaly Wool, Konsulko Group

About me

- Has been with embedded Linux since 2003
- Worked for MontaVista
- Currently living in Sweden (Skåne)
- Staff Engineer at Konsulko Group
- Managing Director at Konsulko AB

About this presentation

- What's OTA
- What's XIP
- OTA and XIP
 - And memory constraints
- Conclusions

What's OTA?

OTA / FOTA

[Firmware] Over-The-Air update

No need to physically connect device being updated

Widely used for mobile devices and routers

- NB: infamous router updates
- Coming to automobiles, IoT devices etc.
 - Non-OTA update would require a service visit
 - E. g. driving to car service center
 - ...or a visiting technician
 - Some IoT devices may be far away or hard to access

FOSS OTA updaters

OSTree (libostree)

- Used by AGL, Fedora
- swupdate
 - Partial OE integration
- RAUC
 - Good OE integration
- update_engine
 - Used by Android

Konsulko Group

OTA updater requirements

Fail-safe

- No "partial updates"
- Recoverable: rollback to a previous software state
 - Basically implies having 2 versions of software
 - Sometimes not possible due to size limitations
- Capable of updating all software / firmware
 - Bootloader, kernel, root file system, data
- Secure
 - Update package authenticity and integrity

OTA classification 1

OTA classification 2

Double-copy OTA

What's XIP?

XIP: execute in place

Code executed directly from persistent storage

- Typically NOR flash
- QSPI

XIP kernel

- Option selected at compile time
- XIP userspace
 - Requires a special filesystem
 - Cramfs (legacy), AXFS

Kernel XIP

Bootloader	Kernel A	Kernel B	
			QSPI

Application FS A	Application FS B	
Data		
		NAND

Traditional XIP design (userspace can be anywhere)

Kernel/Userspace XIP

Bootloader	Kernel A		Kernel B	
Application FS A		Арр	olication FS B	QSPI

Data	
	NAND

More expensive design but we do save on RAM

XIP advantages

Less RAM needed

Usually up to 10x smaller RAM footprint

Konsulko

Group

- Sometimes no RAM at all is needed
- Lower idle power consumption
 - May be crucial for IoT running on battery
- Shorter boot time
 - No copy on boot
- Faster execution
 - QSPI flash

XIP obstacles

You can't write to flash and execute from it at the same time

- However, you can write to flash using special tricks
 - Code copied/executed from RAM
 - No other code may be executed during that time
- XIP requires more space on flash storage
 - At least kernel code can not be compressed
- All addresses are defined at compile time
 - Which may be a security compromise

OTA and XIP

OTA and XIP: Same goals...

Konsulko Group

...sharper underwater rocks

□ Fail-safety is crucial

- Easier to brick device
- Possible security breaches
- Memory-constrained system
 - Integral update image may not fit
- That calls for a double-copy mechanism
- We'll show that existing double-copy are no good with XIP

RAM disk (initrd) OTA

- Single copy
- \Box Will it work with XIP? YES
 - updater can occupy userspace / kernel data area
- Requires the whole update image to fit in memory

Bootloader OTA

Basically the same as initrd, but updater is in the bootloader

- Likely to consume less space
- Very "thick" bootloader
 - [part of] bootloader should run from RAM
 - Should be aware of system internals
 - Harder to debug
 - Less secure
- □ Will it work with XIP? YES

Userspace OTA

Simple in non-XIP case

- update inactive kernel/application partitions
- Verify, mark as active and reboot
- Kernel A can not execute during Kernel B update
 - Interrupts and preemption must be disabled during update
- Userspace may be XIP too
 - Updater should be copied to RAM with all the libraries it would use

Trustzone OTA (ARM)

Conclusions

XIP can add value to OTA solutions

- But it adds complexity, too
- XIP puts certain requirements on updaters
- Existing FOSS updaters don't play together well with XIP
- Secure updates with trusted application work well with XIP
 - But there are no known FOSS solution for that yet

Questions?

Vitaly.Wool@konsulko.com