
Building Debian-Based Products:

Experiences in Collaboration

Kazuhiro Hayashi, Toshiba Corporation

(Baurzhan Ismagulov, ilbers GmbH)

Japan Technical Jamboree 61

Jun 23, 2017

2

Motivation

• Deby and Isar :

– Both use Debian

– Have common goals

• Seek working with community

• Benefits

– Avoid effort duplication

– Achieve more

Japan Technical Jamboree 61

3

Contents

• What is Deby

• What is Isar

• Comparison

• What we do

• Summary

Japan Technical Jamboree 61

4

What is Deby?

• A reference Linux distribution for embedded system

• “Shared Embedded Linux Distribution” project

– One of the activities of CELP (Core Embedded Linux Project)

• https://www.linuxfoundation.jp/projects/core-embedded-linux

– Goals

• Create an industry-supported embedded Linux distribution

• Provide supports for long term

• Based on the two projects

– Debian GNU/Linux

• Cross-built from Debian source packages

– Yocto Project

• Cross-built with Poky build system and
metadata for Debian source packages (meta-debian)

• Origin of the name

– Debian + Poky

– Debian-like

Japan Technical Jamboree 61

https://www.linuxfoundation.jp/projects/core-embedded-linux

5

Deby: Purposes

• Providing features required in embedded systems,

including civil infrastructure

– Stability

• Well-tested software set

– Long-term support

• 10+ years, especially for security fixes

– Customizability

• Changing configure options, compiler optimizations, etc.

– Wider hardware support

• Contribution and collaboration with other communities

– Debian, Debian-LTS

– Yocto Project

– Similar Debian-based projects like Isar

Japan Technical Jamboree 61

6

rootfs SDK kernel

apt-get install (bitbake)

apt repository

sysroots (Shared binaries)

Deby: How it works

Japan Technical Jamboree 61

A.deb

Cross build (bitbake)

B.deb C.deb hello.deb

poky (Recipes)

Fetch

meta-x (Custom layer)

meta-debian
A.bb

debian-package.bbclass

B.bb C.bb

meta (OE-Core) .conf .bbclass .bb

Debian source packages A B C

C.bbappend hello.bb

Extra sources hello

Same buildflow

as poky’s

Common function

for Debian sources

X.bb defines how

to build Debian

source package “X”

7

Deby: How to use

• Repository

– https://github.com/meta-debian/meta-debian

• Quick start

– https://github.com/meta-debian/meta-debian/blob/morty/README.md

• Example: Build the minimal images and run on QEMU

Japan Technical Jamboree 61

$ git clone -b morty git://git.yoctoproject.org/poky.git

$ cd poky

$ git clone –b morty https://github.com/meta-debian/meta-debian.git

$ cd ..

$ export TEMPLATECONF=meta-debian/conf

$ source ./poky/oe-init-build-env

$ bitbake core-image-minimal

$ runqemu qemux86 nographic

https://github.com/meta-debian/meta-debian
https://github.com/meta-debian/meta-debian/blob/jethro/README.md

8

Deby: Current development status

Japan Technical Jamboree 61

Debian version 8 jessie (the latest stable)

Yocto Project version 2.2 morty (stable)

2.3 pyro (development)

Kernel 4.4 LTS / 4.4 CIP

BSP QEMU: x86 (32bit, 64bit), ARM, PowerPC, MIPS

BeagleBoard, PandaBoard, MinnowBoard

BeagleBone Black, Raspberry Pi 1/2, Intel Edison

init manager busybox, systemd

Package manager dpkg / apt

Supported packages Approx. 600

9

What is Isar?

• Image generation for embedded systems

– Installs Debian binary packages as a base system

– Builds and installs product’s software packages

– Creates ready-to-use firmware images

– Just a build system, not a distribution

• Origin

– Predecessor system at Siemens

– Developed by ilbers GmbH

– Sponsored by Siemens

• Uses:

– BitBake: Recipes for building and installing packages

– Yocto: Structure, layering, workflow (doesn’t rely on poky code base)

– Debian: Binary packages (not included in Isar)

• Name

– Integration System for Automated Root filesystem generation

– A river in Munich

Japan Technical Jamboree 61

10

Isar: Goals

• Product build system

– One-command, on-demand building

– Reproducibly create ready-to-use firmware images

– Integrate product applications and customizations

– Multiple upstreams, multiple products, strong reuse

– Easy for beginners, familiar and powerful for advanced

• Customer requirements

– Low effort: Native builds, no massive changes to upstream packages

– Scale from small to big

– Security updates

– Maintenance: 10+ years

– Legal clearing

Japan Technical Jamboree 61

11

Isar: How it works

Japan Technical Jamboree 61

Create armhf build chroot

Build custom packages

Debian apt

hello.git

buildchroot

hello.deb

Create armhf rootfs rootfs

Create target image

Install custom packages

isar-image-base

U-Boot kernel

12

Isar: How to use

• Repository

– https://github.com/ilbers/isar

• Quick start

– https://github.com/ilbers/isar/blob/master/doc/user_manual.md

• Example: Build a minimal image and run under QEMU

Japan Technical Jamboree 61

$ su -c "apt-get install dosfstools git mtools multistrap parted

python3 qemu qemu-user-static sudo"

$ su -c "echo –e $USER¥¥¥¥tALL=NOPASSWD:¥ ALL >>/etc/sudoers"

$ git clone https://github.com/ilbers/isar

$ cd isar

$. isar-init-build-env ../build

$ bitbake isar-image-base

$ start_armhf_vm # User: root, password: root

https://github.com/ilbers/isar
https://github.com/meta-debian/meta-debian/blob/jethro/README.md
https://github.com/ilbers/isar

13

Isar: Current development status

Japan Technical Jamboree 61

Debian versions 8 “Jessie”, 9 “Stretch”

Architectures i386, amd64, armhf

Boards QEMU: pc (i386, amd64), virt (armhf)

Raspberry Pi, Siemens Nanobox

Boot U-Boot, grub, rpi boot loader, UEFI

Output Disk image, filesystem image, …

Base system Debian-based distro (not a part of Isar), e.g.:

• Debian:

• Init: sysvinit, busybox, systemd

• Package manager: dpkg, apt

• Source packages: 25432 (Stretch)

• Raspbian: …

• …

14

Comparison of Isar and Deby

Japan Technical Jamboree 61

Isar Deby

Base system Debian binary packages (no

rebuilding)

Binary packages cross-built from

Debian source packages

Build system bitbake poky (bitbake + OE-Core)

Host tools Debian: multistrap, dpkg-

buildpackage, qemu

poky

Metadata

(bitbake recipes)

 Class and recipes for building

product packages

 Recipes for image generation

 Debian packages not included

 Common function to unpack

Debian source packages

(debian-package.bbclass)

 Full recipes for cross-building

every Debian source package

Compilation Native Cross

Benefits  Re-use Debian binaries and QA

 Fast (re-use, parallel builds)

 Lower development costs

 Affinity with Poky recipes

 Fully customizability

 No need to keep binary pkgs

Common

features

 Based on Debian packages (stability, long-term maintenance)

 Build packages and images with bitbake recipes

 Generate images by installing binary packages

 Manage multiple products as a set of layers

15

Deby: Interaction points

Japan Technical Jamboree 61

Debian

Deby

Yocto Project

. . .

zip

zlib

ack-grep

acpid

bitbake

oe-init-build-env

runqemu

16

Isar: Interaction points

Japan Technical Jamboree 61

Debian

Isar

Yocto Project

. . .

zzz-to-char

zzzeeksphinx

0ad

0ad-data wic

oe-init-build-env

runqemu

bitbake

wic

isar-init-build-env

runqemu

bitbake

17

Isar

(native)

Deby

(cross)
SLIND

(cross)
debian-cross

(cross)

Emdebian

Grip

(native)

Debian

(native)
Crush

(cross)

2009

2006

Year

2013

2015
2016

Year

2006

2009

2013

2015
2016

2014

History of Debian-based projects

Japan Technical Jamboree 61

1st release

v1.0v1.0

ML created v3.1

published

v0.1

v0.2

Contribution

Cross-building

Contribution

Use debian/rules

Share ideas, code

rebootstrap

18

Ideas for collaboration

• As the first step

– Share the current benefits and issues of the both projects

– Find features that could be shared

– Create a proof of concept of the common features

– List up issues, then define the next iteration

• Main topics

– Both projects build Debian packages. Build time for subsequent

builds can be improved by re-using previous build results

• Binary package caching

– Massive changes like cross-building is better done as a community

• Cross-building of packages

– Both projects require features to summarize license information in

generated images

• Support license clearing

Japan Technical Jamboree 61

19

Binary package caching 1/2

• Motivation

– Improve build time by re-using previous build results

• Common features

– After building a package: Save built packages for later use

– Before building a package: If a pre-built version exists, skip building

– During package installation: Install from the project’s apt repo

• Approach

– Share functions to re-use built packages

– Goal: Implement a common layer providing binary package caching

• What we did

– Isar released the first implementation of binary package caching

– Deby implemented a proof of concept of binary package caching,

referring to the results of Isar

Japan Technical Jamboree 61

20

Binary package caching 2/2

• Lessons learned

– Deby

• Requires two architectures (not only target but also native)

– Poky always builds native binaries required for cross-building

• Need to adapt binary package caching to sysroots

– All built binaries are shared in sysroots for building others

– Isar: Very divergent code bases, much glue, little common code

• Next steps

– Deby

• Design ways how to support multiple architectures and adapt

sysroots in binary package caching

• Or, consider changing the current sysroot based build flow to

another one which has better affinity with Debian packages

– Isar: Propose a common layer

Japan Technical Jamboree 61

21

Isar: Scripts

Japan Technical Jamboree 61

Debian

Isar

Yocto Project

. . .

zzz-to-char

zzzeeksphinx

0ad

0ad-data wic

oe-init-build-env

runqemu

bitbake

wic

isar-init-build-env

runqemu

bitbake

22

Cross-building of packages 1/3

• Motivation

– Isar

• Experience in cross-building Debian packages

– Deby

• Developing and maintaining full recipes for cross-building Debian

packages without debian/rules costs too much

• Planning to cross-build packages with debian/rules in recipes (.bb)

– Implement common functions to handle debian/rules

– Create patches for debian/rules to support cross-building

– Debian 10 (buster)

• A lot of efforts to support cross-building in debian/rules

• Discussed in https://lists.debian.org/debian-cross/

Japan Technical Jamboree 61

https://lists.debian.org/debian-cross/

23

Cross-building of packages 2/3

• Common features

– debian/rules based package build (Deby: planning)

– Supporting cross-build in community makes big sense

• Approach

– Share existing resources for supporting cross-building

– Contribute to debian-cross

• Support cross-building not in-house but in Debian community

• What we did

– Isar provided examples of

• Common function (.bbclass) to cross-build Debian package

• Source packages with patches to support cross-building

– Deby

• Implemented proof-of-concept recipes which cross-build packages
with debian/rules, referring to the example of Isar

• Identified 2191 of 3035 packages that don’t support cross-building

• Added cross-building to libxinerama, reported #861073

Japan Technical Jamboree 61

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=861073

24

Cross-building of packages 3/3

• Lessons learned
– Deby

• debian/rules of several packages in Debian buster work with the
Deby’s cross toolchain without modification

• Issue: debian/rules depends on commands and data in native system
ignoring sysroots

– Isar:

• Initially released native building under QEMU to avoid massive
changes; re-adding cross-building due to performance

• ELBE reports issues with distcc, good experiences with icecc

• Next steps
– Deby

• Consider new design to adapt debian/rules to sysroots

• Keep creating patches for debian/rules to support cross-building

– Isar

• Merge cross-building

• Implement automatic cross-dependency installation in a Debian way

Japan Technical Jamboree 61

25

Deby: Interaction points (Current)

Japan Technical Jamboree 61

Debian

Deby

Yocto Project

. . .

zip

zlib

ack-grep

acpid

bitbake

oe-init-build-env

runqemu

26

Deby: Interaction points (Future)

Japan Technical Jamboree 61

Debian

Deby

. . .

zip

zlib

ack-grep

acpid

Yocto Project

bitbake

oe-init-build-env

runqemu

27

Support License Clearing 1/2

• Motivation
– As general issues, examining and summarizing license information in

generated images take time and require carefulness

– As long as using the same Debian source packages, such efforts should
be shared in related projects

• Approach
– Share results of license examining and summarizing by using the

common tools

• Improve the quality of the output

• Reduce costs for examining and summarizing

– Support machine readable license data in Debian package level

• DEP-5 formatted debian/copyright

– https://www.debian.org/doc/packaging-manuals/copyright-
format/1.0/

• First, keep accurate license data in Debian community

– Contribute to Debian by posting patches for debian/copyright

• Second, effectively summarize license information according to
debian/copyright by sharing common tools

Japan Technical Jamboree 61

https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/

28

Support License Clearing 2/2

• What we did

– Setup tools for investigating and summarizing license information

• Scanning & Clearing: FOSSology

• Summarizing: sw360

– Provided DEP-5 copyright for zlib, reported #862260

• Initial output from FOSSology, manual editing

• Lessons learned

– Need to clear licenses and copyright holder name in “debian”
directory even if no copyright holder name is detected by scanning
tool

• Next steps

– Keep posting patches for debian/copyright to support DEP-5 with
clarifying policies of contribution

– Share the tools and results of license investigation for Debian
packages with related projects

– Work with sw360 and ELBE on BoM and release notes generation

Japan Technical Jamboree 61

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=862260

29

Summary

• Common goals
– Package building, image generation and customization, licensing support

• Divergent goals
– Deby: Max customizability

– Isar: Min modifications

• Current and future work
– Converge towards debian/rules and cross-building

– Provide tools to support license clearing

– Cross-building: Provide patches to Debian

– Licensing: Move to DEP-5 and provide patches to Debian

• Lessons (re-)learned
– Provide an implementation

– Upstream your work

– Bigger changes require community work

– Providing a common layer for disparate code bases is a challenge

– Proper license clearing costs time

– Performance does matter

Japan Technical Jamboree 61

