
Using Workload Detection and Characterization for

Power Management in Intel x86 MID platforms

Sujith Thomas

Intel Corporation

Acknowledgements

Harinarayanan Seshadri, Rajeev Muralidhar, Ananth R Krishna, Nithish Mahalingam, Vishwesh Rudramuni

Intel Corporation

Contents

� Intel x86 MID/smartphone platform
overview

� Power Management Overview &
ChallengesChallenges

� Dynamic workload detection

� Workload characterization and “mode”
detection

� Results, future extensions

Introduction

During the past decade, Operating Systems for battery-operated portable and

embedded systems have evolved significantly, addressing growing processor

complexity and providing a more complete software platform for developing

sophisticated applications.

Yet power management has remained an afterthought until now. With power

efficiency becoming one of the dominant issues facing the electronics industryefficiency becoming one of the dominant issues facing the electronics industry

today, OSs are playing a pivotal role in energy management.

Intel© Moorestown x86 MID platform
• 3 chip MID platform

• Some kernel porting for legacy compatibility

(PCI, SFI, IOAPIC emulation, etc.)

– Refer earlier talk by Jacob Pan yesterday

– Idle power management talk by German

Monroy

• Enables different form factor devices –

tablets, smartphones

Power Management in X86 MIDs

• CPU power management
– Lincroft CPU supports deep C-states

– Standard CPUIDLE-based C-state management through cpuidle governors

•CPU Performance management
– Standard CPUFREQ based P-state management through cpufreq governors

•Device Power Management
– Hardware becoming smarter and flexible wrt power management

– Device drivers are becoming smarter wrt power management

– Upcoming changes in Linux Runtime PM Framework – decentralized, autonomous

power management by drivers

Power Management Challenges

Platform power management
� Idle power management

� Active power management

Idle power management

� Detecting subsystem/device idleness – device drivers should ideally do this on their own,

in a device specific manner

� Based on this driver can autonomously manage its power state – new Linux Runtime PM

Active power management - What if:Active power management - What if:

� Devices do not detect/manage their idleness?

� Can we power down subsystems that are not actively involved in the current usage of the

device? Need HW support for this

� For eg. If the workload identified on the platform is “video from hard-disk” subsystems

like SDIO (WLAN), Bluetooth etc. can be transitioned to a low power state (if the devices do

not do that on their own)

Can we do more by intelligently detecting “usage” of the

platform?

Challenges with Active Power Management –

Workload Characterization

� How can we detect a subsystem usage and selectively manage it without

impacting user experience?

� How can we detect the type of workload running on the platform without

causing overhead to the platform itself

� How can we minimize the latencies associated with recognizing workload

changes in the platform?

Workload and Patterns

� Each workload has unique characteristics and it’s a distinct signature for that

work load

� The characteristics/signature of workload can be determined by observing

certain parameters

150

200

250

M
o

n
it

o
ri

n
g

 S
y

m
b

o
ls

Scatter Graph for Symbol Hits

Workload

Distinguisher line

The above plot shows how clear patterns can be established for the same

workload and how we can distinguish workloads using pattern recognition

techniques.

0

50

100

150

0 10 20 30 40

M
o

n
it

o
ri

n
g

 S
y

m
b

o
ls

Workload Hit Symbols

Workload A - Run 1

Workload A - Run 2

Workload B - Run 1

Workload B - Run 2

Distinguisher line

Using Kernel Kprobes

• Kprobes property, to trap at almost any kernel
code address, specifying a handler routine is
used in workload characterization and
detection.

• Extensions to Kprobes : We are proposing a
sysfs interface to set a group of symbols and
another interface to read back the symbols
that got hit.

The Design

1. Get the list of workloads/use-cases for the platform

2. Get the list of subsystems which can be power managed

3. Identify the core device drivers and extract the relevant symbols

4. For each use case, run a kernel profiler to collect the pattern

5. Train a Neural Network for these patterns

6. Transfer the ‘weights’ generated to the run-time platform6. Transfer the ‘weights’ generated to the run-time platform

7. Install ‘kprobes’ for relevant symbols

8. Collect pattern at periodic intervals based on user configuration

9. Determine the inactive/active device and do mode transitions

The proposed Neural Network

Training and testing the Neural Network

� Kprobes are installed for all kernel symbols which may be part of the pattern for the use

cases in which we are interested

� Parameters obtained from profiling a use-case is given as input to the neural network

� Back Propagation algorithm is used to train the neural network, and to get the weights for all � Back Propagation algorithm is used to train the neural network, and to get the weights for all

the links

� On training the neural network, a mathematical relationship between input and output is

established

� A known set of symbols are provided to the trained neural network, and the predicted results

are validated against the actual

Training Phase Flow

Run-time Prediction using Neural Network

� The weights obtained from the trained network is used for run-time prediction

� During a run-time usage scenario the kernel is continuously probed using Kprobe

� Fresh set of input are obtained as parameters and are passed to neural network

as input

� Output from neural network aids in selective powering off the devices on the

platform

Runtime Phase Flow

Results

Determining devices involved for usecases on

Moorestown Platform

0.2
0.4
0.6
0.8

1
1.2

P
ro
fi
le
d
 D
e
v
ic
e
 a
c
ti
v
it
y

USB
0

0.2

Console

Audio

Playback

Console

USB data

transfer

Console

MMC data

transfer

Video

playback

without

Audio from

MMC

Idle with X-

Windows

Workload

P
ro
fi
le
d
 D
e
v
ic
e
 a
c
ti
v
it
y

USB

MMC

Gfx

Audio

Thank YouThank You

