
ConfidentialPA110/23/20141

Automated
Testing Summit

2018

Tim Bird

Fuego Test System Maintainer

Sr. Staff Software Engineer, Sony Electronics
1

ConfidentialPA110/23/20142

Outline

Introduction
Vision
Problem statements
Discussion Areas
Wrap-up

2

ConfidentialPA110/23/20143

Our apologies in advance...

• This will likely be a frustrating day

• Everyone has ideas about testing that they’ve been thinking
about for years

• We can’t possibly cover them all in one day

• With 20+ tests and frameworks present, we can’t review the
details of each one

ConfidentialPA110/23/20144

Goals for today

• Approach a common understanding of the problem space

• Discuss an overarching framework for describing how our
different systems work

• Develop common terminology

• Learn how other systems solve problems

• Learn a bit about problems our own systems don’t solve

• Create a path for the future

ConfidentialPA110/23/20145

Introduction

• Two things recently that made me think about the value of
collaboration:
• Ribbon

• “Alone”

ConfidentialPA110/23/20146

Ribbon

• I got a ribbon from my sister on the present for my birthday

ConfidentialPA110/23/20147

Ribbon thoughts

• Ribbon was inexpensive
• I almost threw it away

• Ribbon is also a marvel of modern technology
• dyes of many colors, refined metal, textile, fabrication, distribution

• Thousands of humans involved in thousands of operations, to
bring me a ribbon for less than $1

• Low cost only possible due to high degree of specialization,
collaboration and exchange.

• I kept it to remind me of the value of this

ConfidentialPA110/23/20148

“Alone” TV show

• 10 people are placed in wilderness, with clothes and only 10
modern items – completely alone

• Person who can survive the longest wins

• Longest survival time is 87 days

ConfidentialPA110/23/20149

“Alone” lessons

• The same lesson as the ribbon, but from the opposite
direction
• With no specialization, collaboration or exchange of goods or

services – a person can’t survive

• People literally reduced to eating bark

• Very difficult to make your own tools sufficient to survive

ConfidentialPA110/23/201410

Outline

Introduction
Vision
Problem Statements
Discussion Areas
Wrap-up

10

ConfidentialPA110/23/201411

Vision – super high level

• Significant parts of the test process are
unshared, ad hoc, private, etc.
• However, most QA doesn’t need to be proprietary

• There are open source frameworks and test
programs but more is needed to create an
open testing community

• Goal:
• Promote the sharing of automated CI components,

artifacts, and results, the way code is shared now
• Allow components to specialize, and support

collaboration between projects

Do for testing
what open source

has done for coding

ConfidentialPA110/23/201412

Non-goals for today

• Finish standards for APIs or protocols between systems
• That’s too ambitious, but we can get conversations started today.

• Learn about neat feature of other systems, and start
implementing them ourselves
• That’s the wrong approach

• Instead we should:
• Identify unique value in our systems, and try to modularize it for re-use by

others

• Identify value in other systems, and start thinking about how to use it in
our systems

ConfidentialPA110/23/201413

More concretely...

• I don’t want to add to Fuego:
• Email-based patch CI triggers
• SUT deployment abstractions (provisioning)
• DUT control drivers
• Centralized results repositories
• Distributed results visualization

• I want to focus on areas where Fuego is
different:
• Repository of test definitions
• Sharing of pass criteria and testcase

documentation
• Generalized output parsing system

ConfidentialPA110/23/201414

Outline

Introduction
Vision
Problem Statements
Discussion Areas

14

ConfidentialPA110/23/201415

Problem statements

• Why are we here?
• Many aspects of QA are not shared

• Nobody can do it all themselves

• Tests are viewed as “secret sauce” and are kept proprietary
• Exactly the same as embedded system software 20 years ago

• Samsung, LG, Sony all produce TV sets
• Which of these use test software from another vendor?

• Which of these share their TV functionality tests?

ConfidentialPA110/23/201416

Why are tests not shared?

• No place to share a new test
• Is that true? What about LTP or kselftest?

• There are open source tests (cyclictest, syzkaller, iozone, lmbench,
etc.)

• Often involves lab-specific code
• e.g. interface to hardware that is unique or rare

• Is often customized to a particular hardware or software
configuration on the target

• Test definition is heavily dependent on test framework
• file format, APIs, architecture

ConfidentialPA110/23/201417

Specialization of tests

• The paradox of generalization and specialization
• Tests are too specialized to their framework, or their lab, or

hardware characteristics, etc.

• Solution is to create more generalized testcases, and allow
per-use customizations
• Ability to customize test (skip lists, customizable expected values,

variants)

• Localized results interpretation (pass criteria)

• Preferably do automatic customization
• e.g. Benchmark value threshold based on previous results

ConfidentialPA110/23/201418

Factorization

• Different frameworks factor their data and services quite
differently.
• Where operations are performed:

• 1) central server, 2) on a local host, or 3) on-DUT

• Party responsible for performing operation:
• 1) by the test itself, 2) by the framework, 3) by an external service, or 4)

by the end user (tester)

• When are operations performed:
• 1) during the test, 2) during post-processing, 3) synchronously, 4)

asynchronously, etc.

• Parts of the test definition are in different files, to support per-test,
per-board, or per-lab customizations

ConfidentialPA110/23/201419

Fractal nature of testing

• Test features look the same at different levels of abstraction

• Example:
• Individual testcase has assertions about expectected values

• actual value different from expected = failure

• Test suite has aggregation of expected results, with expected
results

• Test plan has aggregation of test results from many test suites,
with expected results

• Can do pass criteria, results analysis, reporting at all levels

• But often the features are expressed completely differently at
different levels

ConfidentialPA110/23/201420

Outline

Introduction
Vision
Problem Statements
Discussion Areas
Wrap-up

20

ConfidentialPA110/23/201421

Discussion areas

• Terminology and stack parts
• Review of glossary

• Review of diagram

• Different areas of the stack
• Test Definition, Build Artifacts, Test Execution API (E)

• Run Artifacts, results format, parsing, Results gathering API (K)

• Farm standards, DUT control drivers, board definitions
• APIS F, G (maybe something new?)

ConfidentialPA110/23/201422

Getting started

• Using common terminology
• Review of glossary

• Review of diagram

ConfidentialPA110/23/201423

Review of glossary

• Questions:
• Is anything unclear?

• Review of terms

• Is anything missing?
• Review of candidate terms

ConfidentialPA110/23/201424

Glossary

• Bisection

• Boot

• Build artifact

• Build manager

• Dependency

• Deploy

• Device under Test (DUT)

• DUT controller

• DUT scheduler

• Lab

• Log

• Log Parsing

• Monitor

• Notification

• Pass criteria Provision (verb)

• Report generation

• Request (noun)

• Result

• Results query

• Run (noun)

• Run artifact

• Serial console

• Software under test (SUT)

• Test agent

• Test definition

• Test program

• Test scheduler

• Test software

• Transport (noun)

• Trigger (noun)

• Variant

• Visualization

ConfidentialPA110/23/201425

Candidate terms

• Actual Value - the value that was seen for an operation performed by a test

• Expected value - the value that was expected for an operation performed by a test

• Feature - an attribute of a DUT or SUT or test environment that can be used to match tests. (used by labgrid)

• Device type - The name of a set of DUTs that have identical or similar features, such that any one of them can be
used to run a test (used by LAVA)

• ** Tim's comment: Some examples would be good. Is there a term for the set of boards that have a particular type? (e.g. something that refers to
the pool of boards, rather than the characteristics of the set? Maybe DUT pool?)

• PDU - Power Distribution Unit - a piece of hardware used to control power to one or more DUTs (used by LAVA)

• Interactive DUT access - the ability to take a board out of automated testing service, for use in interactive testing
or debugging sessions (or for some other reason.

• Alternates: "DUT-offlining"? "DUT reservation"?)

• DUT Supervisor - provides connection to the DUT and abstraction for DUT management actions (used by SLAV)

• Test Profile - same thing as Test Definition. (used by Phoronix Test Suite)

ConfidentialPA110/23/201426

Some terms in detail

• Expected value

• Variant

• Test plan

• Test definition

• Pass criteria

• Dependency

ConfidentialPA110/23/201427

Expected Value

• Value that is expected result for an operation.

• Many tests have this hardcoded

• However, it’s nice if this is customizable

• Some tests allow taking a snapshot, and using that as a
baseline
• This makes it possible to customize the expected value, possibly in

an automated way.

• Example:
• test script that checks for a hardcoded list of services that are

supposed to be running after boot vs. test script that checks for a
user-provided list of services

ConfidentialPA110/23/201428

Expected value (cont.)

• If a test has configurable expected value, then it is more
general, and can be customized by the user for different test
scenarios

ConfidentialPA110/23/201429

Variant

• Is something about the environment or command line that
can be controlled at test run time

• Example:
• Dhrystones number of loops

• Is a command line option that controls test duration

• If not set correctly, Dhrystone fails on some boards

• if not default, must be specified per board

• Many command-line options for tests fall in this category
• They exist to customize the test for particular scenarios

ConfidentialPA110/23/201430

Variant (cont.)

• Variant are hard to configure without domain-specific
knowledge

• Would be good to share the most common ones (ie the most
useful command line combinations)

• Is a way to customize a generic test

• Need to be able to customize by board, or by file system, or
by network
• Variants can’t only be defined per-test

• Example: cyclictest arguments should be customized for your RT
requirements

ConfidentialPA110/23/201431

Pass criteria

• Describes the requirements (pass counts, fail counts, fail-ok-
lists, benchmark value thresholds) that determine the final
test result
• Used for automated test interpretation

• This determines the ultimate ‘red or green’ result

• Must also be able to customize per board, or per filesystem,
or per- some other attribute

• Example: LTP
• raspberry pi has 28 failures

• beagleone black has 67 failures, 2 hangs, and 1 kernel panic

• List of expected failures, or results that are ignored for now

ConfidentialPA110/23/201432

Test definition

• All the data and instructions associated with a test
• source code, repositories, build instructions

• dependencies

• license, author, version, and other meta-data

• expected execution time (for timeouts)

• actual instructions to run on DUT

• monitors and snapshots

• results parser

• pass criteria

• visualization configuration (tables vs. graphs)

ConfidentialPA110/23/201433

Test definition (cont.)

• Is used by lots of parts of the system

• Is very different in different frameworks

ConfidentialPA110/23/201434

Dependency

• A pre-requisite that must be filled in order for a test to run
• Lots of different kinds:

• compatible OSes/Distros

• required file, program, package, library

• required feature

• required permissions (eg root)

• required memory, kconfig, processors

• Action may be to exclude test, cause installation, or change
status (sudo)

ConfidentialPA110/23/201435

Review of diagram

• Questions:
• Anything unclear?

• Anything else needed?
• Does anyone's system do something completely outside the diagram?

• e.g. where is 0day's maillist scanner (used as a CI trigger)?

• Are the divisions in the diagram workable
• people have lots of ways they factor this stuff – (where they put

functionality, etc.)
• Despite differences, is the diagram useful to communicate with each other?

ConfidentialPA110/23/201436

ConfidentialPA110/23/201437

Diagram key

• Boxes = processes or services

• Cylinders = repositories (persistent storage)

• Lines = APIs

• Lots of systems have implicit APIs or hardcoded values
• e.g. save a raw file to local filesystem

ConfidentialPA110/23/201438

Diagram elements – APIS 1

• APIS
• A = source repository access API

• B = CI trigger API

• C = test definition (access) API

• D = build artifact repository API

• E = test execution API

• F = board access API (DUT controller API?)

• G = DUT control

• H = hardware API

• J = test equipment API

ConfidentialPA110/23/201439

Diagram elements – APIS 2

• APIS
• K = results retrieval and storage API

• L = backend notification API

• M = run artifact repository access API

• P = results query API

• Q = results query API (command line)

ConfidentialPA110/23/201440

Diagram elements – processes or servers

• Test Manager

• Test Scheduler

• Test Runner (not shown)

• DUT controller

• DUT supervisor (not shown)

• Results data server

• Framework web UI

ConfidentialPA110/23/201441

Diagram elements – repositories

• Test Definition repository (TD)

• Build Artifact repository (BA)

• Run Artifact repository (RA)

ConfidentialPA110/23/201442

How to share

• How to use each other’s code?
• harmonize object definitions

• test definition, run request definition

• support APIs

• modularize pieces
• e.g. You don’t want to download and install all of Fuego just to get the

parser code.

• How to use each other’s data
• build artifacts, run artifacts

• bundle definitions

• standardized field names

• shared servers

ConfidentialPA110/23/201443

Specific Discussion Areas

• Before Lunch:
• Test Definition (TD)

• Build Artifacts (BA)

• Test Execution API (E)

ConfidentialPA110/23/201444

Test Definitions

• Storage format(s)

• Repository Access API

• Elements

• Issues:
• What fields do people have? Why?

• Could we somehow interoperate?
• Allow one system to run tests from another?

• Do the execution models prohibit this?
• Can this be fixed?

ConfidentialPA110/23/201445

Notes

• opentest stuff
• sw assets/ build description

• name, type,

• kernel reference URL: http://..
• could be a reference to yocto

• (called build execution engines)

• Testcase definition
• test execution engine (lava, batf, fuego, etc.)

• TEE logic: script: path to test script

• test params: (variant)

• hardware requirements (dependency)

ConfidentialPA110/23/201446

Dependencies (TD element)

• Kinds
• memory, packages, root, hardware, kernel config, files, features,

permissions)

• Expression and management

• Actions
• exclude test, install item, change status

• Side note: Phoronix seems to have come up with a system
to express package dependencies that spans even multiple
OSes (Linux, BSD, Windows) - that's impressive.
• Any way to leverage without adopting all of Phoronix?

ConfidentialPA110/23/201447

Build artifacts

• Storage format

• Repository Access API

• Elements

• Issues:
• What meta-data is stored?

• Can artifacts be shared?

• What are the bundle formats? (PTS?, Fuego?, Lava?, 0day?)

ConfidentialPA110/23/201448

Test Execution API (E)

• Elements

• API method

• Endpoints

• Issues:
• Synchronous or Asynchronous?

• What fields and why?

• Is there a ‘run request’ object? Is it persistent?

ConfidentialPA110/23/201449 ConfidentialPA110/23/201449

Lunch: 12:30 – 2:00

Located...?

ConfidentialPA110/23/201450

(CELP Brainstorming session)

• For those interested

• Held during lunch (1:00-2:00)
• Grab lunch from buffet, and come back to room for discussion

• Discuss current status of Embedded Linux
• Any projects or features that need LF funding?

ConfidentialPA110/23/201451

Run artifacts

• Storage format

• Repository Access API

• Elements

• Issues:
• What fields and why?

• Can results artifacts be shared?

• What are the bundle formats? (kernelci? LAVA?)

• What logs, monitor results

• unified results format

ConfidentialPA110/23/201452

Run artifact creation

• a) results parsing (RA, API 'K')

• b) unified results format (RA)
• tguids (testcase globally unique identifier)

• naming, using the same name space for the same test (e.g. LTP)

• e.g. (test suite, test set, testcase, measure)

• common meta-data names, types, units (duration, start time,
trigger types, etc.)

• common results names

• common results format (json, xml, etc.) (or interchangeability
between formats)

ConfidentialPA110/23/201453

specific standards (cont.)

• c) common results names (RA, backend)

• try to align on common meanings for results values?

• What are different ones? XFAIL

ConfidentialPA110/23/201454

Results analysis

• f) pass criteria (test runner?, RA, backend?)
• comparison of what people are doing now, and why?

• when applied?

• where does it live?
• see next slide

• fields, how expressed, how used and edited

• relationship to visualization

ConfidentialPA110/23/201455

Pass criteria

• Describes the requirements (pass counts, fail counts, fail-ok-
lists, benchmark value thresholds) that determine the final
test result
• Used for automated test interpretation

• This determines the ultimate ‘red or green’ result

• Must also be able to customize per board, or per filesystem,
or per- some other attribute

• Example: LTP
• raspberry pi has 28 failures

• beagleone black has 67 failures, 2 hangs, and 1 kernel panic

• List of expected failures, or results that are ignored for now

ConfidentialPA110/23/201456

visualization

• h) results colors (frontend)

• i) chart configuration
• How does user customize visualization? Is it persistent?

ConfidentialPA110/23/201457

Board farm standards

• Required operations for board management (API G)
• Integrating lab/DUT management with the test system (API

F)
• DUT controller drivers

• What drivers are needed: power, network, USB, button, relays,
serial, bus control, logging?

• Can the driver interfaces be standardized? (what language?)
• This is an API (not displayed) on the Control Host, to the boxes

inside it in the diagram.
• How to share? (what repo? Who manages?)

• Board definitions? Lab definitions?
• what fields and why? (format?)

ConfidentialPA110/23/201458

Board farm standards (cont.)

• What API style for API F?
• cli?, network?, USB? (I've seen all these)

• discoverability

• Hardware standards for DUT management
• Best practices for DUT makers

• don't require a button press to boot

• support update mechanism aside from manually rewriting the SDcard

• buttons needed for automation should have pins
• etc.

• hardware interfaces that are nice to have on board (and are physically
accessible)

ConfidentialPA110/23/201459

Board farm standards (cont2.)

• Required operations for test equipment? (API J)
• example: monitor power during run

• synchronous or asynchronous?

ConfidentialPA110/23/201460

Shared hosted services

• Results aggregation (RA, backend)
• candidates: kernelci, LKFT?

• Build services - (BA, build/test management)
• candidates: kernelci, kerneltests

• Test repositories (TD, BA)
• candidates: phoronix, Fuego, LAVA?, YP?

• Visualization (backend, frontend)
• candidates: kernelci, squad

ConfidentialPA110/23/201461

Wrap-up

• How to work together

• Incentives

• Resources

ConfidentialPA110/23/201462

How to collaborate

• Going from monolithic systems to modular, interworking
systems?
• How to do it given the wide disparity in systems?

• How do the different systems integrate, communicate
requirements, etc.

• Systems have different languages

• Systems have different division of labor (!!)

• Systems have different execution models
• e.g. Fuego = test-runner based; PTS & LTP = DUT-based

ConfidentialPA110/23/201463

Setting standards

• Who will do it?

• Where can we standardize?

• Who benefits?
• Finding or enumerating incentives to avoid fragmentation

ConfidentialPA110/23/201464

Process going forward

• Next event?

• New mailing list?

• Is anyone willing to take work assignments?
• ie write standards documents, organize meetings, implement

shims, perform compatibility tests, etc.

ConfidentialPA110/23/201465

Incentives

• Nobody wants to commoditize their own layer

• People still need to perform their own testing
• Which means they need all parts of their current monolithic CI

framework, while they modularize parts for re-use by other systems

• It’s hard to maintain software you’re not using
• e.g. DUT control driver for hardware not in your lab, or tests that

you don’t use

ConfidentialPA110/23/201466

Funding the unpleasant work

• This is where it might be good to mention the Kernelci
project
• Is centralized funding needed? good?

ConfidentialPA110/23/201467

Fuego

ConfidentialPA110/23/201468

Ideas

• what tests need to be supported?
• boot-time

• run-time

• package-based (package unit tests)

• driver (hardware specific?)
• requiring specialized hardware external to board (e.g. canbus simulator,

hdmi frame-grabber)

• multinode
• how to allocate/schedule multiple pieces of equipment for a test (e.g. 2 or

more nodes for a network test)

ConfidentialPA110/23/201469

Ideas (cont2)

• results reporting
• centralized server and API to it (kernelCI json?)

• how to define standards
• de-facto only? (dominant project? (cough, LAVA))

• documents?

• What to do with survey results?
• still need to add additional clarification responses

