
© 2013 Toshiba Corporation

An Essential Relationship between
Real-time and Resource Partitioning

2013/10/25

Yoshitake Kobayashi
Advanced Software Technology Group

Corporate Software Engineering Center
TOSHIBA CORPORATION

4 Embedded Linux Conference Europe 2013

Overview

 Background

 Requirement

 Hardware resource partitioning

 Summary

5 Embedded Linux Conference Europe 2013

Background

 Hardware
 Multi-core CPU

 Larger memory

 Larger storage space

 Hardware assisted virtualization

 Software
 Operating system

 Linux

 Virtual Machine Monitor

6 Embedded Linux Conference Europe 2013

Background

 Hardware
 Multi-core CPU

 Larger memory

 Larger storage space

 Hardware assisted virtualization

 Software
 Operating system

 Linux

 Virtual Machine Monitor

 Issues on real-time systems
 Meet its required deadline

 ex. Control systems

 Performance requirement

 Interrupt latency

 Response time

7 Embedded Linux Conference Europe 2013

Requirement (1)

 All Real-time application should meet its real-
time constrain

 Response time (Deadline): 100μs – 100ms

 Event response time (Interrupt latency): 10μs – 100μs

Wakeup time

Process time

Deadline

Period

Event response time

Wakeup time

8 Embedded Linux Conference Europe 2013

Requirement (2)

 A system needs to be able to run both real-time
(RT) application and general purpose (GP)
application at same time

9 Embedded Linux Conference Europe 2013

A sample of current implementation

 Prepare two hardware

 Implement RT application on a specific one

 Implement GP application on other one

 Connect each other by a bus or share memory

CPU

Devices

 Linux kernel

Real time process General purpose processes

 RTOS
B

U
S

10 Embedded Linux Conference Europe 2013

 A system software able to control RT and GP

 System software: OS, VMM

Requirement (3): Make a simple world

CPU

Devices

 System Software

Real time process General purpose processes

11 Embedded Linux Conference Europe 2013

Hybrid OS vs. Single OS approach

12 Embedded Linux Conference Europe 2013

Hybrid OS vs. Single OS approach

 Hybrid OS
 Two or more operating systems runs on same hardware

 RT specific tasks run on RTOS (Real-Time Operating System) and the
other tasks runs on GPOS (General Purpose Operating System)

 ex. uITRON for RTOS and Linux for GPOS

 Possible implementations

 By VMM

 Run GPOS as a task on RTOS

 RTOS and GPOS have different APIs

 Xenomai

 Single OS
 Just use one OS to run both RT and GP applications

 Same API can be used for all applications

 Possible implementations

 Kernel level RT process

 RT-Preempt patch

13 Embedded Linux Conference Europe 2013

Hybrid architecture (Xenomai)

 Xenomai

 Reference: http://www.xenomai.org

 Dual kernel approach based on Adeos/I-Pipe

 I-Pipe works to dispatch events (ex. Interrupts)

 Xenomai skins build on top of the Xenomai nucleus to provide
RTOS APIs such as VxWoks, uITRON

Adeos/I-Pipe

Linux
Xenomai nucleus

devices

Skins

http://www.xenomai.org/
http://www.xenomai.org/

14 Embedded Linux Conference Europe 2013

Hybrid architecture (TOPPERS SafeG)

 SafeG (Safety Gate)

 Reference: http://www.toppers.jp/en/safeg.html

 Dual-OS monitor

 Execute an RTOS (Real-Time Operating System) and a GPOS
(General-Purpose Operating System) on the same hardware
platform

 ARM TrustZone security extensions uses to introduce the concept
of Trust and Non-Trust states

 On the other hand, code running under Non-Trust state, even in
privileged mode, cannot access memory space (devices included)
that was allocated for Trust state usage, nor can it execute
certain instructions that are considered critical.

SafeG

Linux RTOS (uITRON)

IRQ devices FIQ devices

http://www.toppers.jp/en/safeg.html

15 Embedded Linux Conference Europe 2013

Hybrid OS vs. Single OS approach

 Hybrid OS
 More than one OS runs on same hardware

 RT specific tasks run on RTOS (Real-Time Operating System) and the
other tasks runs on GPOS (General Purpose Operating System)

 ex. Linux and uITRON

 Possible implementations

 By VMM

 Run GPOS as a task on RTOS

 RTOS and GPOS have different APIs

 Xenomai

 Single OS
 Just use one OS to run both RT and GP applications

 Same API can be used for all applications

 Possible implementations

 Kernel level RT process

 RT-Preempt patch

16 Embedded Linux Conference Europe 2013

Actual requirement (3): Linux

 Linux runs both RT and GP applications

CPU

Devices

 Linux

Real time process General purpose processes

17 Embedded Linux Conference Europe 2013

Summary of requirements

1. Run RT processes and GP processes on a
hardware platform

2. Need to meet required deadlines

 One of the most important perspective for embedded
systems

3. Use single OS approach

 Linux

18 Embedded Linux Conference Europe 2013

Actual requirement (3): Linux

 Linux runs both RT and GP applications

 This is not a good idea if you don’t care anything

CPU

Devices

 Linux

Real time process General purpose processes

19 Embedded Linux Conference Europe 2013

Issues to run RT process and GP process

 Determinism

 RT process should have a deterministic behavior

 GP process doesn’t assume deterministic behaviour

20 Embedded Linux Conference Europe 2013

 Real-time Preemption Patch
 Fully preemptive kernel

 Improvement for latency

 CPU affinity
 Prohibit process migration from one core to another

 Protect from GP process behaviour

 Maybe good for determinism

How to improve real time performance?

 RT CPU core GP CPU core

RT thread

RTタスク GP thread

GP thread

Scheduler Scheduler

RT thread

RT thread

Effects by workload

21 Embedded Linux Conference Europe 2013

 Partition is a set of hardware resource

 CPU cores, Memory, Devices, ..

 Each partition must be isolated from the others

 No device sharing

Definition of hardware resource partitioning

CPU

Devices

 Linux kernel

Real time processes General purpose processes

22 Embedded Linux Conference Europe 2013

A use case of CPU affinity for RT process

 Run a set of process and thread on specific CPU
core

Advantage

 No process migration
 Process migration is not friendly with real time behviour

 Migration timing cannot be expected

 Just RT process runs on specific cores
 Isolate all GP process into the other cores

CPU core 1 CPU core 2

RT process

23 Embedded Linux Conference Europe 2013

0
20
40
60
80

100
120
140
160
180
200

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

N
u
m

b
e
r

o
f
sa

m
p
le

s

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

N
u
m

b
e
r

o
f
sa

m
p
le

s

Evaluation of interrupt latency with CPU affinity

 Evaluation environment

 Hardware: Pandaboard

 Period: 300μs

Interrupt letency [us]

CPU Affinity

W/O CPU
Affinity

24 Embedded Linux Conference Europe 2013

0
20
40
60
80

100
120
140
160
180
200

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

N
u
m

b
e
r

o
f
sa

m
p
le

s

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

N
u
m

b
e
r

o
f
sa

m
p
le

s

Evaluation of interrupt latency with CPU affinity

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800 900

N
u
m

b
e
r

o
f
sa

m
p
le

s

CPU Affinity

(in some case)

CPU Affinity

W/O CPU Affinity

25 Embedded Linux Conference Europe 2013

Period ?

What’s occurred?

Timer cascade
occurs here

26 Embedded Linux Conference Europe 2013

CPU core 0

Process

CPU core specific

kernel thread

CPU core 1

Kernel thread

Process

Kernel thread

CPU core specific

kernel thread

Limitation of CPU affinity

 Example for CPU core specific kernel thread

 Timer, High resolution timer

 Process migration

 Etc..

27 Embedded Linux Conference Europe 2013

List 1 List 2 List 3 List 4 List 5

Inside the each entry

Timer 1 Timer 2 ・・・

cascade()

Cascade timer list

 Cascade timer

 Register the next timer list to the end of current one

 Impact of cascade timer to interrupt latency

 Runs with interrupt disabled context

 No limits for the number of timers

 Timer process cost becomes higher when tickless kernel used

28 Embedded Linux Conference Europe 2013

Control cascade timers on RT CPU core

 Solution

 Keep the timer list empty on RT core to protect from cascade
timers

RT CPU core

timer.c

GP CPU core

Timer

timer.c

Timer

Timer list (Empty) Timer list

Kernel thread

29 Embedded Linux Conference Europe 2013

RT CPU core

Kernel thread

__run_timers()

GP CPU core

timer

__run_timers()

Kernel thread

Timer list Timer list

Core specific
kernel thread

Timer

Timer

(Ⅲ)

(Ⅱ) (Ⅰ)

Three issues which cause cascade timers

(Ⅰ) Registered by GP process before migration

(Ⅱ) Registered by RT Core specific kernel thread

(Ⅲ) Registered by RT Core specific kernel thread
before RT task runs

Expired timers
causes cascade

30 Embedded Linux Conference Europe 2013

RT core

Kernel thread

timer.c

GP core

Timer

timer.c

Timer

Kernel thread

Timer list Timer list

(イ)

(A)

(B)

Solution for the issue (Ⅰ)

 Preparation

 Log all timer registration by kernel thread

 Solution

 (A) Migrate kernel threads or a GP processes to GP core

 (B) Migrate registered times to GP core refer the log
 （Timer migration）

31 Embedded Linux Conference Europe 2013

RT core

timer.c

GP core

タイマ処理

Timer list Timer list

Core specific
kernel thread

Timer

Timer

(Ⅱ)

(Ⅲ)

Solution for the issues (Ⅱ) and (Ⅲ)

Restrict to resister
new timers to

the GP core only

Case 1: Not enough time to migrate
 Wait for expiration
Case 2: Enough time to migrate
 Migrate the timer to GP core

(Ⅱ) Registered by RT Core specific kernel thread

(Ⅲ) Registered by RT Core specific kernel thread before
RT task runs

32 Embedded Linux Conference Europe 2013

①
②

Evaluation

① ②

Cascade occurs here

Before

After

33 Embedded Linux Conference Europe 2013

Summary

 Requirement
 RT processes and GP processes on a same hardware platform

 Just use Linux for both processes

 Meet its required deadline for RT process

 Hardware resource partitioning
 Set of hardware resources which is isolated from the others

 Define CPU cores as RT core and GP core

 Issues to implement the resource partitioning
 Some kernel thread cannot be migrated

 Core specific kernel thread

 Need to care with CPU affinity feature

 Focused on cascade in timer.c

 Protect from cascade function on RT core

 Keep timer list empty

 Future plan
 Fixing issues

 SCHED_DEADLINE on RT core with fine granularity support

34

Questions?

The latest slide is available at the following URL:
 http://elinux.org/ELC_Europe_2013_Presentations

