
FROM UART TO PCIe and DMA:

SELECTING CONNECTIVITY

FOR YOUR FPGA-BASED SUBSYSTEM

Alexander Wirthmüller

aw@mpsitechnologies.com

#ossummit

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

• R&D Engineer at Mynaric (FPGA-based error-correction
algorithms for free-space optical laser communications)

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Introduction
About me

• Based in Munich

• Diploma in Electrical Engineering

• R&D Engineer at Mynaric (FPGA-based error-correction
algorithms for free-space optical laser communications)

• Founder and Director at MPSI Technologies

• MPSI Technologies: make Embedded Software development
more fun by replacing repetitive tasks by model-based source
code generation

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

U
A

R
T
 o

v
e
r

U
S
B

video pipeline

ca
m

e
ra H

D
M

I

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

analysis

A
D

C

S
P

I

DDR

SDRAM

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

decode

d
a
ta

 lin
k

P
C

Ie

DDR

SDRAM

PCIe

ctr.
X

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

decode

d
a
ta

 lin
k

P
C

Ie

DDR

SDRAM

PCIe

ctr.
X

DMA

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

X
DDR

SDRAM

A
X

Il
it

e

control loop

A
D

C

D
A

C

A
X

Il
it
e

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

X

m
o
to

r co
n
tro

lle
r

te
m

p
e
ra

tu
re

 ctr.

clo
ck

 so
u
rce

C
A

N

I²
C

U
A

R
T

DDR

SDRAM

A
X

Il
it

e

control loop

A
D

C

D
A

C

A
X

Il
it
e

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA module debugging

• Pre-processing / data reduction in FPGA

• FPGA result transfer to host

• using DMA

• FPGA-SoC variant

• with external peripherals

• self-contained

Scenarios and interfaces

SPI, UART [over USB]

AXIlite, SPI

AXI, PCIe

transaction purpose >

bandwidth >

Legend

X DDR

SDRAM

A
X

Il
it

e

A
X

I
A

X
I

DMA

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Lattice CrossLinkNX (volatile FPGA) evaluation board

a) UART-over-USB connected to laptop

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Lattice CrossLinkNX (volatile FPGA) evaluation board

a) UART-over-USB connected to laptop

b) PCIe connected to NXP i.MX6 (quad ARM) system

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Lattice CrossLinkNX (volatile FPGA) evaluation board

a) UART-over-USB connected to laptop

b) PCIe connected to NXP i.MX6 (quad ARM) system

• Microchip PolarFire SoC Icicle kit (quad RISC-V + antifuse FPGA)

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Lattice CrossLinkNX (volatile FPGA) evaluation board

a) UART-over-USB connected to laptop

b) PCIe connected to NXP i.MX6 (quad ARM) system

• Microchip PolarFire SoC Icicle kit (quad RISC-V + antifuse FPGA)

• Xilinx Zynq-7020 (dual ARM + volatile FPGA) developer board

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Lattice CrossLinkNX (volatile FPGA) evaluation board

a) UART-over-USB connected to laptop

b) PCIe connected to NXP i.MX6 (quad ARM) system

• Microchip PolarFire SoC Icicle kit (quad RISC-V + antifuse FPGA)

• Xilinx Zynq-7020 (dual ARM + volatile FPGA) developer board

• FPGA-less designs available, more FPGA-SoC designs under development

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

Features
• Turntable with stepper motor
• Tripod with camera/laser holder
• IMX335 MIPI CSI-2 camera (5MP)

max. data rate 150MB/s @30fps
• Two adjustable red line lasers

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

• On/off identification of line laser traces in
frames

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

• On/off identification of line laser traces in
frames

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Demo project: Tabletop 3D laser scanner
Hardware variants | Key software functionality

• Preview image acquisition

• Checkerboard corner detection for orientation

• On/off identification of line laser traces in
frames

each algorithm can be performed

either on the Linux host or on the FPGA,

with varying load on the interconnect

→

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Outline
Bottom-up then full-circle

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Complexity Net bandwidth Support Conditions

UART 2 wire 400 kB/s i.MX6 (all 32/64bit SoC’s) 4 Mbps on-PCB routing

UART over USB 2 wire 417 kB/s FTDI x64 host USB2.0 hi-speed,
FT232R

SPI 3 wire 4.8 MB/s OMAP3xxx (all 32/64bit SoC’s) 40 MHz on-PCB routing

AXIlite (on-chip) 50 MB/s Zynq (all FPGA-SoC’s) 32 bit words, 100 MHz clock

PCIe 3 diff. pair, 4 wire 250 MB/s CrosslinkNX (all mid-range
FPGA’s)

one lane PCIe 1.x, 2.5 Gbps

AXI4 (on-chip) 776 MB/s PolarFire SoC (all FPGA-SoC’s) 64 bit x 256 bursts, 100 MHz
clock

Physical layer
Linux host FPGA

RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Character device driver category

• transfer control by host

• from user space: open(), ioctl(), read(), write(), close()

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Character device driver category

• transfer control by host

• from user space: open(), ioctl(), read(), write(), close()

• UART:

• typ. drivers: bus/platform/drivers/imx-uart

• typ. device files: /dev/ttyS*, /dev/ttymxc*

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Character device driver category

• transfer control by host

• from user space: open(), ioctl(), read(), write(), close()

• UART:

• typ. drivers: bus/platform/drivers/imx-uart

• typ. device files: /dev/ttyS*, /dev/ttymxc*

• UART over USB:

• typ. drivers: bus/usb-serial/drivers/ftdi_sio, bus/usb-serial/drivers/cp210x

• typ. device files: /dev/ttyUSB*, /dev/ttyACM*

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Character device driver category

• transfer control by host

• from user space: open(), ioctl(), read(), write(), close()

• UART:

• typ. drivers: bus/platform/drivers/imx-uart

• typ. device files: /dev/ttyS*, /dev/ttymxc*

• UART over USB:

• typ. drivers: bus/usb-serial/drivers/ftdi_sio, bus/usb-serial/drivers/cp210x

• typ. device files: /dev/ttyUSB*, /dev/ttyACM*

• SPI:

• typ. drivers: bus/spi/drivers/spidev

• typ. device files: /dev/spidev*.*

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Character device driver category (cont’d)

• a simple cross-platform AXIlite driver, to appear at /dev/<pick_your_favorite>

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

static ssize_t device_read(

 struct file* file

 , char __user* buffer

 , size_t length

 , loff_t* offset

) {

 ssize_t retval = 0; // number of bytes read

 size_t i;

 u32 rdy;

 size_t len32 = length / 4; // align bytes to words

 if ((length % 4) > 0) len32++;

 void* buf = kmalloc(4 * len32, 0); // allocate memory

 if (buf) {

 for (i = 0; i <= 20; i++) { // wait for max. 210us

 if (i != 0) udelay(i);

 iowrite32(0xAAAAAAAA, mmAxilite + OFS_AXILITE_SETREAD); // REQ to read control address

 rdy = ioread32(mmAxilite + OFS_AXILITE_SETREAD);

 if (rdy == 0xAAAAAAAA) break; // ACK from read control address

 };

 if (rdy == 0xAAAAAAAA) {

 for (i = 0; i < len32; i++) // data from actual read address

 ((u32*) buf)[i] = cpu_to_be32(ioread32(mmAxilite + OFS_AXILITE_READ));

 iowrite32(0x55555555, mmAxilite + OFS_AXILITE_SETREAD); // ACK to read control address

 retval = length - copy_to_user((void __user*) buffer, buf, length);

 };

 kfree(buf);

 };

 return retval;

};

static ssize_t device_read(

 struct file* file

 , char __user* buffer

 , size_t length

 , loff_t* offset

) {

 ssize_t retval = 0; // number of bytes read

 size_t i;

 u32 rdy;

 size_t len32 = length / 4; // align bytes to words

 if ((length % 4) > 0) len32++;

 void* buf = kmalloc(4 * len32, 0); // allocate memory

 if (buf) {

 for (i = 0; i <= 20; i++) { // wait for max. 210us

 if (i != 0) udelay(i);

 iowrite32(0xAAAAAAAA, mmAxilite + OFS_AXILITE_SETREAD); // REQ to read control address

 rdy = ioread32(mmAxilite + OFS_AXILITE_SETREAD);

 if (rdy == 0xAAAAAAAA) break; // ACK from read control address

 };

 if (rdy == 0xAAAAAAAA) {

 for (i = 0; i < len32; i++) // data from actual read address

 ((u32*) buf)[i] = cpu_to_be32(ioread32(mmAxilite + OFS_AXILITE_READ));

 iowrite32(0x55555555, mmAxilite + OFS_AXILITE_SETREAD); // ACK to read control address

 retval = length - copy_to_user((void __user*) buffer, buf, length);

 };

 kfree(buf);

 };

 return retval;

};

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Advanced category: PCIe and AXI4(-Burst)

• typically, only makes sense combined with DMA and interrupts

• the kernel’s Userspace I/O has corresponding features, already integrated with PCIe
https://www.kernel.org/doc/html/v5.0/driver-api/uio-howto.html#making-the-driver-recognize-the-device

• helpful article by Oleg Kutkov regarding PCIe
https://olegkutkov.me/2021/01/07/writing-a-pci-device-driver-for-linux/

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

https://www.kernel.org/doc/html/v5.0/driver-api/uio-howto.html#making-the-driver-recognize-the-device
https://olegkutkov.me/2021/01/07/writing-a-pci-device-driver-for-linux/

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Generic RTL modules for UART and SPI

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Generic RTL code for AXIlite in two parts

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

entity Axirx_v2_0 is

 port(

 reset: in std_logic;

 mclk: in std_logic;

 req: in std_logic;

 ack: out std_logic;

 dne: out std_logic;

 len: in std_logic_vector(21 downto 0); -- in words, max. 2^22-1

 d: out std_logic_vector(31 downto 0);

 strbD: out std_logic;

 rdyRx: out std_logic;

 enRx: in std_logic;

 rx: in std_logic_vector(31 downto 0);

 strbRx: in std_logic

);

end Axirx_v2_0;

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Vendor-specific IP for PCIe required

• Available from major vendors free of charge

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Vendor-specific IP for PCIe required

• Available from major vendors free of charge

• Survey mid-June 2022

• intel PSG Cyclone-V: Avalon interfaces

“Cyclone V Avalon {Memory Mapped/Streaming} Interface for PCIe Solutions” (UG-01110_av{mm/st})

• Lattice CrossLinkNX

“PCIe X1 IP Core” (FPGA-IPUG-02091-1.4)

• Microchip PolarFire SoC

“PolarFire FPGA and PolarFire SoC FPGA PCI Express” (user guide)

• Xilinx Zynq: AXI4-Stream interface

“7 Series FPGAs Integrated for PCI Express v3.3” (PG054)

Hardware abstraction layer
Device driver [host] | Soft IP [FPGA]

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Application and protocol layers
Host to FPGA | FPGA to host

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

• Host: C++ API library forms byte code and initiates transfers guarded by CRC

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Application and protocol layers
Host to FPGA | FPGA to host

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

• Host: C++ API library forms byte code and initiates transfers guarded by CRC

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA: ”host interface” module decodes the byte string and triggers a handshake with the ”step” target module

Application and protocol layers
Host to FPGA | FPGA to host

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA: ”host interface” module decodes the byte string and triggers a handshake with the ”step” target module

Application and protocol layers
Host to FPGA | FPGA to host

entity Step is

 generic (

 fMclk: natural range 1 to 1000000 := 50000 -- in kHz

);

 port (

 reset: in std_logic;

 mclk: in std_logic;

 tkclk: in std_logic;

 ...

 reqInvMoveto: in std_logic;

 ackInvMoveto: out std_logic;

 movetoAngle: in std_logic_vector(15 downto 0);

 movetoTstep: in std_logic_vector(7 downto 0);

 ...

 nslp: out std_logic;

 m0: inout std_logic;

 dir: out std_logic;

 step0: out std_logic

);

end Step;

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA: reduce 2560x1920 YUV images @30fps (150MB/s)
to 160x120 RGB images (1.73MB/s), then provide to host in A/B buffer

Application and protocol layers
Host to FPGA | FPGA to host

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• FPGA: reduce 2560x1920 YUV images @30fps (150MB/s)
to 160x120 RGB images (1.73MB/s), then provide to host in A/B buffer

• Host: poll the buffer status, initiate buffer transfer and display

Application and protocol layers
Host to FPGA | FPGA to host

Linux host FPGA
RTL algorithms,

state machines, etc.
target-specific target module
C++ API library RTL handshake
encode/decode host interface

C++ code RTL module

hardware abstraction layer device driver soft IP
silicon IP and copper wires

standard-compliant
physical layer

protocol layer

application layer handoff

application layer C++ data processing

void* JobWzskAcqFpgapvw::runPvw(

 void* arg

) {

 // - prepare

 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[1]");

 srv->srcarty->camacq_setPvw(false, 0, 0);

 srv->srcarty->camif_setRng(true);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[1]");

 // - loop

 while (true) {

 if (shrdat.cancelPvw) break;

 shrdat.mPvw.lock("JobWzskAcqFpgapvw", "runPvw[2]");

 srv->srcarty->camacq_getPvwinfo(tixVPvwbufstate, tkst);

 if ((tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) || (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF)) {

 if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::ABUF) srv->srcarty->shrdat.hw.readPvwabufFromCamacq(sizeBuf, buf, datalen);

 else if (tixVPvwbufstate == VecVWskdArtyCamacqPvwbufstate::BBUF) srv->srcarty->shrdat.hw.readPvwbbufFromCamacq(sizeBuf, buf, datalen);

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[2]");

 } else {

 shrdat.mPvw.unlock("JobWzskAcqFpgapvw", "runPvw[3]");

 nanosleep(&deltat, NULL);

 };

 };

 return NULL;

};

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• “Single source of truth” generation of code for host and FPGA sides

Model-based design
Less repetitive coding and consistent results

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• “Single source of truth” generation of code for host and FPGA sides

• One model file for modular structure, specifying “controllers” aka. RTL modules with commands / buffer transfers

attributed

Model-based design
Less repetitive coding and consistent results

co
n

tr
o

lle
rs

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• “Single source of truth” generation of code for host and FPGA sides

• One model file for modular structure, specifying “controllers” aka. RTL modules with commands / buffer transfers

attributed

• Another model file to specify those commands and buffer transfers

Model-based design
Less repetitive coding and consistent results

co
n

tr
o

lle
rs

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Three FPGA API concepts
Simple, callback-based, register-based

Simple (cf. slides before) Callback-based Register-based

blocking access to FPGA resource
for all command / buffer transfer
requests

commands / buffer transfers can
be launched (non-blocking), with
notification on reply

no commands / buffer transfers
exist; targets and their {set/get}table
parameters are written / polled

one-at-a-time processing in host
interface

command invocation / return
buffer FIFO’s

simple mapping

Pros • low FPGA footprint • delayed and multiple
command returns possible

• industry standard, good also for
bare-metal

Cons • host may have to poll status
from multiple threads

• larger FPGA footprint • lack of comfort, prone to error
• undefined behavior as update

order not guaranteed

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Linux host to FPGA connectivity is not rocket science

Conclusion

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Linux host to FPGA connectivity is not rocket science

• What helps

• Few, established hardware interfaces are used throughout the industry

• The corresponding FPGA IP is free, ideally Open Source

• On the Linux side, there is convenient character device and UIO driver support

Conclusion

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

• Linux host to FPGA connectivity is not rocket science

• What helps

• Few, established hardware interfaces are used throughout the industry

• The corresponding FPGA IP is free, ideally Open Source

• On the Linux side, there is convenient character device and UIO driver support

• Model-based generation of source code for both sides simplifies life further

• Designs become interface-agnostic

• Vendor lock-in can be avoided

Conclusion

From UART to PCIe and DMA: selecting connectivity for your FPGA-based subsystem Embedded Linux Conference North America 2022

Thank You!
Questions?

Also, feel free to connect.

• https://www.linkedin.com/in/wirthmua

• https://github.com/mpsitech

https://github.com/mpsitech
https://github.com/mpsitech

