
C
o
p

y
ri

g
h

t
©

 2
0

2
2

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Threads in Embedded Linux

Six Easy Pieces

Presenter: Loïc Domaigné
Senior Member Technical Staff

Doulos

Six Easy Pieces

1. Getting Started

2. Thread Creation and Lifecycle

3. Thread Stack

4. Memory Access

5. Mutex and Condition Variable

6. Threads and Signals

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Why Linux? Why Threads?

1996

2016

Foundry simulation (Beowulf cluster) Telecom Air Traffic Control

Airline IT Medical Automotive
All product names, logos, and brands

are property of their respective owner

MAGMASOFT ®

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Process and Threads

User Process N

Thread 1

Stack

State

Signal Mask

Priority

File Descriptors

Memory

Signal Handlers

User Process M

Thread 1

Stack

State

Signal Mask

Priority

Thread 2

Stack

State

Signal Mask

Priority

Thread 3

Stack

State

Signal Mask

Priority

File Descriptors

Memory

Signal Handlers

task_struct

shared by all threads

specific to

each thread

$ man 7 pthreads

1:1 mapping

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

clone

App

C Runtime Library

C library call

System Call Dispatcher

clone(func, stack, flags, NULL, …)

pthread_create(&tid, NULL, func, NULL)

sys_clone3() sys_futex()

Resources to share:
VM | SIGHAND | FILES…

User Space

Kernel Space

Stack to be used
by func()

Piece #2

Thread Creation and Lifecycle

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Starting a New Thread

#include <pthread.h>

int pthread_create(

 pthread_t *restrict thread, // thread identifier

 const pthread_attr_t *restrict attr, // thread attribute (NULL=default)

 void *(*func)(void *), // start routine

 void *restrict arg // arg is passed to func()

);

User Process

main() func()

File Descriptors

Memory

Signal Handlers

pthread_create()

• Return Value:

- 0 on success.

- error number on failure.

• Compile/link flag: -pthread

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Demo time!

// let's start our first thread

// how hard can that be???

https://github.com/Doulos/EOSS23

https://github.com/Doulos/EOSS23

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Your mileage may vary…

Aspect to watch out when coming from another OS/language:

• Error reporting?

• Is creation/start one or two separate states?

• Impact when the "main thread" terminates?

• Impact when a thread crashes (SIGSEGV…)?

• When are threads resources cleaned-up?

• …

While concepts are often similar, subtle differences in

behaviours might catch us

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Linux/POSIX behaviour (1)

Where Action Result Comments

Thread pthread_create() New thread
Creation+start all in one

Beware of race conditions

main() return Process ends
All threads die!
exit(main(argc,argv,envp))

func() return Thread ends Resources might be retained

Thread exit() Process ends All threads die!

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Linux/POSIX behaviour (2)

Where Action Result Comments

Thread HW Exception* Process terminates All threads die!

Thread pthread_exit() Thread terminates Resources might be retained

Thread pthread_join()
Wait until thread

ends

Thread resources are

recycled

Thread pthread_detach() Decouple a thread
Resources automatically

reclaimed when thread ends

(*) SIGBUS, SIGILL, SIGFPE, SIGSEGV

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread Life Cycle

Runnable Running

Sleeping

wait for

resource

Exited

scheduled

preempted

acquired

created

done or

cancelled

return
pthread_exit()
pthread_cancel()

pthread_create()

Linux scheduler

Simplified view

Piece #3

Thread Stack

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread Stack

• Starting a thread:

• Threads require a separate stack:

• Many "embedded OS" require to define the stack.

• So does the clone(2) API.

• Not seen yet?

• What about stack overflow?

rc = pthread_create(&tid, NULL, start_routine, NULL);

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Demo time!

// let's overflow the stack

// for fun and teaching

https://github.com/Doulos/EOSS23

https://github.com/Doulos/EOSS23

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread Stack Layout (glibc 2.35)

stackaddr

stacksize

 (8 MiB)

TCB
0x7f7216400000

Guard (4 KiB)

rc = pthread_create(&tid, NULL, func, NULL);
printf("tid = %p", tid);
…
tid = 0x7f72163ff640

[963.372358] ex2[2949]: segfault at 7f7215bfffc8
ip 00007f721645a95b sp 00007f7215bfffa0 error 6
in libc.so.6

func

stack

0x7f7215c00000 8192K rw--- [anon]

0x7f7215bff000 4K ----- [anon]

0x7f72163ff640
Thread Control

Block

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread Stack – Quick Facts

• Only Virtual Memory range is mapped:

• Memory is committed using page-faults mechanism.

• For Real-time App: use mlockall().

• C-library may use different default stack size:

• Glibc : 8 MiB (v2.35), Musl : 384 KiB (v1.2.4).

• Solution: control stack size.

• "Thread Control Block" stored on the thread's stack:

• Stack mapping retained, even if thread has terminated.

• Solution: pthread_join() or pthread_detach().

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Controlling the Stack

stackaddr

stacksize

TCB

Guard (4 KiB)

func

stack

pthread_attr_getguardsize()
pthread_attr_setguardsize()

Thread Control

Block

pthread_attr_getstacksize()
pthread_attr_setstacksize()

pthread_attr_getstack()
pthread_attr_setstack()

pthread_attr_getdetachstate()
pthread_attr_setdetachstate()
pthread_detach()

Piece #4

Memory Access

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Accessing Memory

• Any thread can access any (valid) memory address.

• local variable passed to the thread's start routine,

• global variables,

• any variable or location, if the address is known.

• In many situations, we want a sequentially consistent ordering.

• Needs synchronization! (execution order + memory visibility).

T
im

e

Thread A Thread B

x = 42;

printf("x=%d\n", x) We expect: x=42

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Memory Visibility

Thread A Thread B

x = 6;

y = 7;

pthread_create(B); //create ThrB

t = x + y;

pthread_join(B); z = x * y;

t += 8;

return NULL;

assert(z==42);

assert(t==21);

sees x,y

sees z,t

value set by a thread prior to

pthread_create() can be seen by the

new thread.

Likewise, value set by a thread can

be seen by the thread joining it.

int x,y,z,t; // global variables

T
im

e

No such guarantee here!!

(depends on timing, and system

architecture!)

Piece #5

Mutex and Condition Variable

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Mutex

Thread A Thread B

x = 6; y = 7;

pthread_mutex_lock(&mtx);

t = x + y;

pthread_mutex_lock(&mtx)

pthread_mutex_unlock(&mtx);

t += 8;

pthread_mutex_unlock(&mtx)

pthread_mutex_t mtx = PTHREAD_MUTEX_INIALIZER;

After unlock: t will be seen in any

thread that locks the same mutex

Blocks until A unlocksT
im

e

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Mutex Quick Facts

• Mutex = binary semaphore conceptually, but is:

• faster: syscall only when contended.

• owned by a thread.

• For RT-App: prio inheritance/ceiling protocol possible.

• Thread that locks should also unlock.

• Behaviour in error situation (relock, not owner…)?

• Depends on the mutex type: NORMAL, ERRORCHECK, RECURSIVE.

• Example: NORMAL mutex causes a deadlock if relocked by the same

thread.

• Mutex doesn't synchronize which thread locks first.

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Condition Variables (Incorrect use of)

Thread A Thread B

x = 6; y = 7; pthread_mutex_lock(&mtx);

pthread_mutex_lock(&mtx);

pthread_cond_wait(&cv, &mtx);

t = x + y;

pthread_cond_signal(&cv);

pthread_mutex_unlock(&mtx); t += 8;

pthread_mutex_unlock(&mtx)

pthread_mutex_t mtx = PTHREAD_MUTEX_INIALIZER;

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

unlock mtx, blocks until A signals cv

T
im

e

mtx is locked

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Where is the "condition" ?

Thread A Thread B

x = 6; y = 7; pthread_mutex_lock(&mtx);

pthread_mutex_lock(&mtx); while (t==0)

{

pthread_cond_wait(&cv, &mtx);

t = x + y; }

pthread_cond_signal(&cv);

pthread_mutex_unlock(&mtx); t += 8;

pthread_mutex_unlock(&mtx)

pthread_mutex_t mtx = PTHREAD_MUTEX_INIALIZER;

pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

T
im

e

wait until t is set

signal change on t

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Condition Variable – Quick Facts

• Usage pattern:

• signal = wakes up one waiter, broadcast = all waiters.

• no waiter = notification is lost. (not a problem, wait is skipped).

• use a while loop! a strict if statement might fail us.

pthread_mutex_lock(&mtx);

while (! wanted_condition) {

 pthread_cond_wait(&cv, &mtx);

}

// do work, change condition

...

pthread_mutex_unlock(&mtx);

waiter

pthread_mutex_lock(&mtx);

// change condition

...

// signal or broadcast

pthread_cond_signal(&cv);

pthread_mutex_unlock(&mtx);

notifier

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread Synchronization

Objects Main operation Typical Usage

Mutex lock*, unlock
Mutual exclusion / Access shared data

("one thread at a time").

Condition

Variables

wait*, signal,
broadcast

Wait for some condition to become true

Barrier wait
Blocks until N threads reaches the

barrier

Read-Write

Locks
lock*, unlock

Like mutex, but reader blocks only if

writer holds the locks.

Spinlocks lock, unlock Like mutex, but spins.

Thread of execution + Memory

* For mutex, condition variable, read-write lock: timed lock/wait exists.

Piece #6

Threads and Signals

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Thread and Signal

• Single threaded process:

• Signal is delivered to process.

• Interrupt Execution flows when unblocked.

• Runs the signal handler asynchronously.

• Thread makes asynchronous code synchronous.

• Somewhat antinomic to signal.

• Multi-threaded process:

• Signal is still delivered to the process.

• Which thread is interrupted?

• Can we block delivery in some thread?

• Signal semantic for SIGSTOP? SIGFPE? …

signal

handler

Hic Sunt
Dracones

process

🐉

MT-process

signal

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Demo time!

https://github.com/Doulos/EOSS23

// Let's meet some dragons

// compiling with –pthread
// breaks my single threaded code!

// PS: won't happen on Linux ;)

https://github.com/Doulos/EOSS23

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Handle Signal with Threads

sigset_t mask; // signals to handle

int main()
{
 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 pthread_sigmask(SIG_BLOCK, &mask, NULL);

 // start thread incl. sighandler_thread
 ...

}

void *sighandler_thread(void *ign)

{

 int caught;

 while (1) {

 sigwait(&mask, &caught);

 // handle signal caught

 ...

 }

}

wait synchronously

sigmask is inherited

block signals in all threads

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

Signals – Quick Facts

• Previous pattern allows to:

• use any (mt-safe) functions in signal handler thread.

• remove limitation regular process signal handler.

• Signal and process:

• SIGKILL terminates process (= all threads).

• SIGSTOP = stop all threads, SIGCONT = restart.

• HW exception always delivered to the "faulty thread".

• Other signals delivered to arbitrary thread, unless blocked.

• Use:

• pthread_kill() to send a signal to a specific thread.

• pthread_sigmask() to modify the per-thread signal mask.

Piece #7

Going Further

C
o
p

y
ri

g
h

t
©

 2
0

2
3

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

References and Further Readings

https://man7.org/tlpi/
https://kernel.org/pub/linux/kernel/people/

paulmck/perfbook/perfbook.html

$ man 7 pthreads

https://man7.org/tlpi/

C
o
p

y
ri

g
h

t
©

 2
0

2
2

 D
o
u

lo
s
.
A

ll
R

ig
h

ts
 R

e
s
e

rv
e

d

	Slide 1
	Slide 2: Six Easy Pieces
	Slide 3: Why Linux? Why Threads?
	Slide 4: Process and Threads
	Slide 5: clone
	Slide 6: Piece #2
	Slide 7: Starting a New Thread
	Slide 8: Demo time!
	Slide 9: Your mileage may vary…
	Slide 10: Linux/POSIX behaviour (1)
	Slide 11: Linux/POSIX behaviour (2)
	Slide 12: Thread Life Cycle
	Slide 13: Piece #3
	Slide 14: Thread Stack
	Slide 15: Demo time!
	Slide 16: Thread Stack Layout (glibc 2.35)
	Slide 17: Thread Stack – Quick Facts
	Slide 18: Controlling the Stack
	Slide 19: Piece #4
	Slide 20: Accessing Memory
	Slide 21: Memory Visibility
	Slide 22: Piece #5
	Slide 23: Mutex
	Slide 24: Mutex Quick Facts
	Slide 25: Condition Variables (Incorrect use of)
	Slide 26: Where is the "condition" ?
	Slide 27: Condition Variable – Quick Facts
	Slide 28: Thread Synchronization
	Slide 29: Piece #6
	Slide 30: Thread and Signal
	Slide 31: Demo time!
	Slide 32: Handle Signal with Threads
	Slide 33: Signals – Quick Facts
	Slide 34: Piece #7
	Slide 35: References and Further Readings
	Slide 36

