
Recent Tracing
Updates
CELF Jamboree #78
Masami Hiramatsu <mhiramat@kernel.org>

mailto:mhiramat@kernel.org

Speaker
Masami Hiramatsu
● Works for Linaro as a Senior Tech Lead.
● Linux kernel maintainer of

○ Kprobes
○ X86 instruction decoder
○ Ftrace’s kprobe events and dynamic events
○ Perf-probe tool
○ Extra Boot Configuration

● U-Boot
○ SynQuacer platform support

Topics
● Boot-time tracing
● Eprobe
● User-space events
● Kernel object tracer
● fprobe/rethook
● Kprobe event BTF support
● Kretinsn probe

Boot time tracing
“Tracing boot time with most of ftrace features”
Boot-time tracing feature gets improved with Extra Boot Config

boottrace-LF-live-2021

https://linuxfoundation.org/wp-content/uploads/boottrace-LF-live-2021-update.pdf

Event probe
“Dynamic event on another event” (Tzvetomir Stoyanov (VMware))
Eprobe-event can define a new event on top of another static event.
● Dereference the pointers in static event arguments.

○ Record the field of the data structure.
○ Record the string from the pointer.

● Run a callback function as a hidden trigger.

Event probe usage
Record the filename string from openat
syscall event
(1) Check the ‘format’ of an event

(2) Define ‘e’ probe on the event.

(3) Enable the eprobe event

(4) Dump the trace file

cat events/syscalls/sys_enter_openat/format

name: sys_enter_openat

…
field:const char * filename; offset:24;

size:8; signed:0;

…
echo "e:openat syscalls/sys_enter_openat
file=\$filename:ustring" >> dynamic_events

echo 1 > events/eprobes/openat/enable

cat trace

TASK-PID CPU# ||||| TIMESTAMP
FUNCTION

| | | ||||| | |

 sh-135 [000] ...1. 130.319467:
openat: (syscalls.sys_enter_openat)
file="/etc/passwd"

osnoise tracers
“Per-cpu latency statistics from OS” (Daniel Bristot de Oliveira (RedHat))
Very precise statistics

/sys/kernel/debug/tracing # cat trace
tracer: osnoise
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable MAX
|||| / delay SINGLE Interference counters:
||||| RUNTIME NOISE %% OF CPU NOISE +-----------------------------+
TASK-PID CPU# ||||| TIMESTAMP IN US IN US AVAILABLE IN US HW NMI IRQ SIRQ THREAD
| | | ||||| | | | | | | | | | |
 osnoise/0-154 [000] 389.402628: 1000000 34157 96.58430 600 225 0 1000 20 3
 osnoise/2-156 [002] 389.404770: 1000000 61377 93.86230 7231 330 0 1014 30 24
 osnoise/1-155 [001] 389.409279: 1000000 26729 97.32710 295 239 0 1000 21 0
 osnoise/4-158 [004] 389.417794: 1000000 22383 97.76170 125 179 0 1000 29 2
 osnoise/6-160 [006] 389.421173: 1000000 31039 96.89610 633 423 0 1000 21 0
 osnoise/5-159 [005] 389.433969: 1000000 56918 94.30820 2945 363 0 986 27 0
 osnoise/7-161 [007] 389.436098: 1000000 25307 97.46930 89 272 0 1000 20 2

timerlat tracer
Per-timer latency statistics

tracer: timerlat
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / _-=> migrate-disable
|||| / delay
||||| ACTIVATION
TASK-PID CPU# ||||| TIMESTAMP ID CONTEXT LATENCY
| | | ||||| | | | |
 timerlat/4-171 [004] 706.895227: #58508 context thread timer_latency 106167 ns
 timerlat/5-172 [005] 706.895470: #58508 context thread timer_latency 105815 ns
 <idle>-0 [004] d.h1. 706.896158: #58509 context irq timer_latency 36692 ns
 timerlat/4-171 [004] 706.896227: #58509 context thread timer_latency 105876 ns
 <idle>-0 [005] d.h1. 706.896401: #58509 context irq timer_latency 37409 ns
 timerlat/5-172 [005] 706.896469: #58509 context thread timer_latency 105578 ns
 <idle>-0 [004] d.h1. 706.897158: #58510 context irq timer_latency 36712 ns
 timerlat/4-171 [004] 706.897226: #58510 context thread timer_latency 105802 ns

New features for-next
Already merged but not released yet.

- User-space event

User_events
“User application can send raw event data to ftrace” (Beau Belgrave (Microsoft))
Application can define new event and send the event to kernel.
● Event status (enabled/disabled) is exposed via mapped page.

○ Application can change the behavior of the event.
■ E.g. skip event parameter preparation when it is disabled.

○ Application event can be analyzed by ftrace histogram/filters.
● Much faster than uprobes.

○ Only one writev systemcall is needed.

User_events interfaces
2 special tracefs interfaces added for user_events
● <tracefs>/user_events_status

○ Used for sharing the event status “page” with kernel.
○ A char-array page shared by mmap().

● <tracefs>/user_events_data
○ Used for ;

■ Define a new user-event via ioctl()
■ Write user-event data from application via writev()

● Event definition ioctl(DIAG_IOCSREG)
○ Event definition passed via “struct user_reg”
○ This returns write-index and status-index.

● Event status check
○ Check the status-index byte of mmapped “user_event_status”. (!0 == enabled)

● Event data
○ Write [write-index][event-data] data via writev()

User_events usage
(1) open status file and mmap the data

(2) open data file and ioctl() the new event
definition

(3) prepare the event data

(4) write the data if enabled(traced)

struct user_reg reg;

int page_fd = open("user_events_status", O_RDWR);

char *page_data = mmap(NULL, PAGE_SIZE, PROT_READ, MAP_SHARED,
page_fd, 0);

close(page_fd);

int data_fd = open("user_events_data", O_RDWR);

reg.size = sizeof(reg);

reg.name_args = (__u64)"test int payload";

ioctl(data_fd, DIAG_IOCSREG, ®);

struct iovec io[2];

io[0].iov_base = ®.write_index;

io[0].iov_len = sizeof(uint32_t);

io[1].iov_base = &payload;

io[1].iov_len = sizeof(int);

if (page_data[reg.status_index])

writev(data_fd, io, 2);

User_events and trace_marker
What is the difference between user-events and trace-marker?
Trace_marker
● Pros

○ Easy to use, just write a string to <tracefs>/trace_marker.
● Cons

○ Can not disable the event.
○ Fixed trace event - only get the string from user.
○ Not able to be used with trigger and filter because the data is “string”.

User_events
● Pros

○ Can define multiple events.
○ Can disable each event.
○ Can set the trigger and filters by user-data.

● Cons
○ Need to define user_event (name and fields) before use.
○ Need to write with the event index.

New features under development
These are currently under development

- Kernel object tracer
- fprobe/rethook

Kernel Object Tracer
“Online object tracking tracer” (Jeff Xie (Individual contributor))
Trace all function calls involving target object (by address).
● The target object address is specified by “objtrace” event trigger.
● The object is checked at every function entry, and recorded with the value.

○ This is a kind of function tracer filter based on the parameter.

Trigger syntax
 objtrace:add:FIELD[,OFFSET][:TYPE][:COUNT][if COND]

● Currently only “add” is supported.
● “remove” will be added. (e.g. for object delete function)

Kernel object tracer usage
(1)Add an event on alloc_inode()

(2) Set “objtrace” trigger with inode and
 its “i_mod” field offset (0).

(3) Do something

(4) Dump trace file

echo 'r alloc_inode inode=$retval' >> kprobe_events

#

echo ‘objtrace:add:inode,0:u16:1’ >>
events/kprobes/r_alloc_inode_0/trigger

ls > /dev/null

cat trace

…
 ls-144 [004] ...1. 912.348433:
inode_sb_list_add <-new_inode object:0xffff8880070a89c8
value:0x0

 ls-144 [004] ...1. 912.348474:
current_time <-proc_pid_make_inode
object:0xffff8880070a89c8 value:0x416d

 ls-144 [004] ...1. 912.348480:
timestamp_truncate <-current_time object:0xffff8880070a89c8
value:0x416d

fprobe/rethook
“Multiple function entry/exit probe” (Masami Hiramatsu (Linaro)/Jiri Olsa(RedHat))
Ftrace + kretprobe based new probe. (kernel API, like kprobes)
● This will speed up eBPF kprobe events for multiple functions.

○ Original Jiri’s idea
● Kretprobe will be rewritten with rethook.
● Eventually, graph tracer’s shadow stack will be integrated(?)

Fprobe usage
(1) Set entry/exit handler to fprobe

(2) Set optional flag

(3) Call register_fprobe*() with probe point
 (fprobe supports pattern, symbol list and
address list)

Do something

(4) Call unregister_fprobe() to finish.

static notrace void sample_entry_handler(struct fprobe
*fp, unsigned long ip, struct pt_regs *regs)

{

 pr_info("Enter <%pS> ip = 0x%p\n", (void *)ip,
(void *)ip);

}

…

fprobe.entry_handler = sample_entry_handler;

fprobe.exit_handler = sample_exit_handler;

fprobe.flags = FPROBE_FL_KPROBE_SHARED;

register_fprobe(&fprobe, “vfs_*”, “vfs_read”);

…

unregister_fprobe(&fprobe);

Rethook & fgraph tracer

task_struct

Ret_stack
array
(4k page)

rethook
_nodeFgraph tracer

rethook

kretprobe

Kretprobe
instance

rethook
_node

rethook
_node

Kretprobe
instance

fprobe

list list

Rethook (and its origin - kretprobe) and fgraph tracer’s ret_stack are the shadow stack.
● Rethook and kretprobe make shadow stack by list of objects
● fgraph tracer uses an array for each task

Shadow Stack - Pros and Cons
List shadow stack
● Pros

○ Flexible memory usage (controllable)
● Cons

● If the list object is not enough, fails to hook the return.

Array shadow stack
● Pros

○ Fixed memory usage (depends on number of tasks)
● Cons

○ Fixed memory usage (might be high just for a single probe)

But the worst case is enabling both of them!

TODO: Shadow Stack integration
Both of array shadow stack and list shadow stack consumes much memory.
● If the array shadow stack is enabled, use that from rethook.
● Kretprobe should move onto rethook.
● Keep using the same rethook interface but switch implementation!

task_struct

Ret_stack
array
(4k page)

rethook
_nodeFgraph tracer

rethook

kretprobe

rethook
_node

fprobe

list

Switch according to the kconfig

Switch to rethook

PoC: Kretinsn probe
“Probe return instruction directly instead of using the shadow stack”
Another idea to solve the shadow stack limitation.
● Kretinsn probe decodes the target function and find “ret” instruction and probe it.
● This does NOT change the stack.

This will reduce memory usage of probing function return.
● Kretprobe (rethook) pools many data nodes for the shadow stack.
● fgraph tracer allocates a page for each tasks as a shadow stack.

Problem:
● It doesn’t work for the function which is tail-call to jump optimization.

Kprobe event BTF support
“Use BTF for accessing function arguments”
Currently we need perf-probe and DEBUGINFO to access function arguments.
BTF allows kernel to analyze the name and the type of functions.
● User can define new kprobe events on function with “argument name”
● Maybe able to access data structure fields without perf-tools

BTF (BPF Type Format)
● DWARF (a.k.a. debuginfo) like binary code information.

○ Limited types are supported.
○ Only function parameter is supported.

■ DWARF supports local variables.
○ Data structure are also described.

■ E.g. the offset of each field.
○ Do not support the assignment

● BPF related tools support this feature.
○ Perf and BPF tools checks the function parameters with this.

● “__user” attribute support is under development.

Kprobe event with BTF
$$args adds all function argument with
appropriate types to kprobe event.

(1) add a kprobe on a function entry with
$$args.

(2) Then it automatically expanded to the
function argument

In the future, we can specify structure
fields etc. without perf-probe. (but only for
the function entry)

echo 'p vfs_read $$args' >> kprobe_events

cat kprobe_events

p:kprobes/p_vfs_read_0 vfs_read file=$arg1:x64
buf=$arg2:x64 count=$arg3:u64 pos=$arg4:x64

echo ‘p vfs_read file->f_pos buf:string’ >>
kprobe_events

cat kprobe_events

p:kprobes/p_vfs_read_0 vfs_read
f_pos=+280($arg1):s64 buf=$arg2:ustring

Thank you!

Refcount leak tracking
In perf, there are many reference counters are used for managing objects.
But keeping use of refcount correctly is hard.
- Some object initialize refcount by 0, others by 1.
- Ian invented a new refcount leak tracker.
- This changes get() into alloc() and put() into free().

func(obj)
 _obj = get(obj);
 /* all operation must be done with _obj. */
 put(_obj);
 /* Then use-after-put can be found. */
 method(_obj) -> use after free!

