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Let's talk about inside of Android.
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= 20+ years involved in embedded systems

= 10 years in real time OS, such as iTRON
= 10 years in embedded Java Virtual Machine
= Now GCC, Linux, QEMU, Android, ...

= Blogs
= http://d.hatena.ne.jp/embedded/ (Personal)
= http://blog.kmckk.com/ (Corporate)

= http://kobablog.wordpress.com/(English)

= Twitter u

= @tetsu_koba
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Android is NOT just

‘Java on LinuXx’

= Android uses Linux kernel. Only kernel.

= User land is totally different from usual Linux
system.

= Android applications are written in Java
language.

= Class libraries are similar to Java SE but not
equal.

= Dalvik VM eats only dex code

= need to translate from Java byte code in
advance )



Let's explore inside of Android

= Assuming you know Linux and Java
very well ;)



Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android
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System architecture

APPLICATIONS

Contacts Phone Browser
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Java is the first class citizen in

Android

= Dalvik VM is the center of Android
runtime.

= Almost all daemon services are written In
Java.

= Application life cycle is described by
Java API



Java is the first class citizen in

Android

= NDK

= native library called from Java via JNI

= This is just a library. Application life
cycle is the same as Java.

= Native activity

= Only C/C++ to make Apps. (just hidden
JNI part into system.)

= not short-cut for C/C++
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Typical Directory Tree of Android

I . ro: mounted as read only
/ (root) initrd (ro) rw: mounted as read and write

yaffs2 (ro)
— /system bin

etc

lib

— /data yaffs2 (rw)

usr

/cache yaffs2 (rw)

/mnt/sdcard removable storage (rw)

L

cf. Usual Linux system assumes all file system are read/writable. 11



Today's topic

= Android system architecture
* Init — runtime - Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android



Boot sequence

Androld boot sequence
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System Services Applications
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vold (mount) 15
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13
quoted from http://hmtsay.blogspot.com/2010/10/android-startup.html
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= located on /init

= need kernel boot parameter to add
“Init=/init”
= Static linked.

= cf. typical linux init is dynamic
linked.

= Doesn't affect even dynamic link
system collapsed.
= http://blog.kmckk.com/archives/3137191.html »
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= The standard libraries

= libc, libm, pthread, dynamic linker

= linker has implicit crash dump function
= http://kobablog.wordpress.com/2011/05/12/debuggerd-of-android/

= Came from *BSD, not glibc

= Currently, doesn't support C++ exception
and RTTI.

= latest NDK supports these by static linking.

15
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= Locate dynamic link libraries ahead of
time.

= 'apriori' command. Different from 'prelink’
command from Red Hat.

= Optimized for small embedded system

= Allocate fixed address to libraries .
= Assume not adding/removing libraries.

= Assume 3GB memory space is large enough
to put all libraries together.

16



Prelink map

build/core/prelink-linux-arm.map

H= = FH S H S

0xC0000000
0xB010000OO
0xB0O00000O
0xA0000000
0x90000000
0x80000000
0x40000000
0x10000000
0x00000000

OxXFFFFFFFF
OxBFFFFFFF
OxBOOFFFFF
OxBFFFFFFF
Ox9FFFFFFF
Ox8FFFFFFF
Ox7/FFFFFFF
Ox3FFFFFFF
OxOFFFFFFF

Kernel

Thread 0 Stack

Linker

Prelinked System Libraries

Prelinked App Libraries
Non-prelinked Libraries
mmap'd stuff
Thread Stacks

.text / .data / heap

# core system libraries

libdl.so OxAFF00000 # [<64K]
libc.so OxAFDO0000 # [~2M]
libstdc++.so OxAFCO0000 # [<64K]
libm.so OxAFB0O00O0OO # [~1M]
liblog.so OxAFAOO0000 # [<64K]
libcutils.so OxAF900000 # [~1M]
libthread db.so OxAF800000 # [<64K]
libz.so O0xAF700000 # [~1M]
libevent.so O0xAF600000 # [2727?]
libssl.so OxAF400000 # [~2M]
libcrypto.so OxXAF000000 # [~4M]
libsysutils.so OxAEF00000 # [~1M]
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quoted from http://worms.zoology.wisc.edu/dd2/echino/cleavage/intro.html
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Zygote process

Dalvik VM

dynamic link
Classes libraries
N ~N

Child process

Dalvik VM

classes

dynamic link
libraries

”~

Dalvik VM classes

Physical memory space

dynamic link
libraries

(Actually these are mapped by pages.)
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Zygote

= Zygote process preloads typical (approx. 1800)
classes and dynamic link libraries so that
childlen start quickly.

= Copy-on-write

= Only when new process writes page, new page is
allocated.

= All pages not be written are shared among all
zygote children.

= Exec system call is not used in zygote.

= Exec wipes the page mapping table of the process.
= It means exec discards zygote cache.

20



UID, GID of Applications

= UID(user id) and GID(group id) is used for
managing multi-user in usual Linux
system.

« Android use this mechanism to isolate
applications.

= Each application has unique UID.
= Can not read/write other application's files.

= Zygote is running as UID=0 (root). After
forking child process, its UID is changed
by setuid system call.

21



Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android



Dalvik VM

= executes dex code, which iIs translated
from Java byte code

= 16bit, register based

= cf. Java bytecode is 8bit, stack based

= has JIT from Android 2.2 (Froyo)
= http://blog.kmckk.com/archives/2691473.html

= has concurrent GC from Android 2.3
(Gingerbread)

= http://source.android.com/tech/dalvik/
23
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Java class libraries

= Different from Java ME, which is used in
traditional Japanese phone.

= Similar to Java SE. But not equal.

= Different window/graphics. No AWT, No
Swing.

= No RMI.
= Take care to use user defined class loader

= dynamic generated classes doesn't work
because Dalvik VM doesn't eat Java class
files but Dex files. y



Caveats of NDK programming

= Dynamic libraries built by NDK are linked
with application process.

= forked from Zygote but UID != 0 (root).
= consider about permissions.

= Don't use fork & exec system calls.

= Back ground process should be made as
android .app.Service.

= Don't use GCC's TLS extension (__thread).

= Simple Android dynamic linker does not support it.
= java.lang.ThreadlLocal is available in Java.



3 commands to invoke Dalvik VM

= [system/bin/app process
= This is the 'Zygote' process.
= [system/bin/dalvikvm
= Similar to usual 'java’ command.
= Try 'dalvikvm -h' to show command line help.
= [system/bin/dvz
= Send request to Zygote process.
= See my blog (Sorry in Japanese)
= http://blog.kmckk.com/archives/3551546.html

26
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Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android



Linux kernel

= Many common Linux device drivers are
available.

= Android specific kernel drivers

= binder
= ashmem
wake lock

logger

= http://elinux.org/Android_Kernel Features

= These source code is not yet merged to
kernel main line repository.

28
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= /dev/binder
= Base of Inter Process Method Invocation

= Not for general purpose. Tuned for specific
transaction.

« Multi-thread aware

= Have internal data per thread
= (CF. Socket have internal data per fd.)
= Doesn't use "write” and "read” system calls.
Write and read at once by "ioctl”.
= http://blog.kmckk.com/archives/3676340.html

29
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= Android / Anonymous SHared MEMory
subsystem

= $(TOP)/system/core/cutils/ashmem.h

= int ashmem_create_region(const char *name, size_t size)
— returns fd

= int ashmem_set prot_region(int fd, int prot)
= int ashmem_pin_region(int fd, size t offset, size tlen)
= int ashmem_unpin_region(int fd, size t offset, size t len)

= Kernel reclaims not ‘pin’ ed memory

= Similar to weak reference of Java. Useful to
Implement cache.

= android.os.MemoryFile from Java program

30



= Lock to prevent entering sleep mode.

= My memos

= http://blog.kmckk.com/archives/3298375.html
= http://blog.kmckk.com/archives/3304836.html

= eLinux wiki

= http://elinux.org/Android_Power Management

31
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= kernel implementation to support
Android's AlarmManager.

= \Wake up even when it was in sleep mode.

32



Low memory Kkiller

= At the shortage of memory, the kernel

select a process seems low priority and
kill it. (1)

= It's OK. because specification in the
Android application life cycle, application
should be preserve its own status.

= http://blog.kmckk.com/archives/2795577 .html

33
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= Android has unique system-wide log
system

= http://blog.kmckk.com/archives/2936958.html

" http://elinux.org/Android _Logging System

34
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Overview of Android Logging System

Target
Java program
prog System.out
/System.err
Native program android. util.Log m—"Cr-ancrocitemal s Host
DDMS
stdout 1
logcat
stdout liblog
[stderr adbd adbserver
User
Kernel adb logcat
< 3
s [
logger 64KB
—
/dev/log/main i — = /dev/log/main
/dev/log/radio w /dev/log/radio
/dev/log/event 256KB /dev/log/event
/dev/log/system 64KB /dev/log/system 35
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= Android specific kernel
drivers

« How to build Android



How to build Android

= All source code is available for download

= except Google specific services (Google
map, Android market, ... )

= Easy to download source and build them

= See AOSP web site
= http://source.android.com/
= Or, my blog
= http://blog.kmckk.com/archives/3722957.html

37
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Conclusion

= Android system architecture is totally
different from normal Linux systems.

= Android uses Linux kernel only,
further more, adding android specific
kernel drivers.

= Designed for Java applications.
= Tuned for small system.

38



Thank you for listening!
Any comments to blogs are welcome.

39
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