.
KNG

Android is
NOT just
‘Java on Linux’

2011.5.22
2011.10.26 updated

Tetsuyuki Kobayashi

Let's talk about inside of Android.

http://www.kmckk.co.jp/eng/kzma9/)
http://www.kmckk.co.jp/eng/jet_index.html

http://www.kmckk.co.jp/eng/kzma9/
http://www.kmckk.co.jp/eng/jet_index.html

= 20+ years involved in embedded systems

= 10 years in real time OS, such as iTRON
= 10 years in embedded Java Virtual Machine
= Now GCC, Linux, QEMU, Android, ...

= Blogs
= http://d.hatena.ne.jp/embedded/ (Personal)
= http://blog.kmckk.com/ (Corporate)

= http://kobablog.wordpress.com/(English)

= Twitter u

= @tetsu_koba

http://d.hatena.ne.jp/embedded/
http://blog.kmckk.com/
http://kobablog.wordpress.com/

Android is NOT just

‘Java on LinuXx’

= Android uses Linux kernel. Only kernel.

= User land is totally different from usual Linux
system.

= Android applications are written in Java
language.

= Class libraries are similar to Java SE but not
equal.

= Dalvik VM eats only dex code

= need to translate from Java byte code in
advance)

Let's explore inside of Android

= Assuming you know Linux and Java
very well ;)

Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android

Today's topic

= Android system architecture
= Init — runtime — Zygoto

= Dalvik VM

= Android specific kernel drivers
= How to build Android

System architecture

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWDORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location MNotification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media Core Libraries

Framework
AT

OpenGL | ES FreeType Machine

SGL 5L

LINUX KERNEL

Display

Flash Memory Binder (IPC)
Driver

Camera Driver ; ;
Driver Criver

Keypad Driver WiFi Driver I:J?lrl-ilfn;fs. HarF::gv:ﬁr:EHt

Java is the first class citizen in

Android

= Dalvik VM is the center of Android
runtime.

= Almost all daemon services are written In
Java.

= Application life cycle is described by
Java API

Java is the first class citizen in

Android

= NDK

= native library called from Java via JNI

= This is just a library. Application life
cycle is the same as Java.

= Native activity

= Only C/C++ to make Apps. (just hidden
JNI part into system.)

= not short-cut for C/C++

10

Typical Directory Tree of Android

I . ro: mounted as read only
/ (root) initrd (ro) rw: mounted as read and write

yaffs2 (ro)
— /system bin

etc

lib

— /data yaffs2 (rw)

usr

/cache yaffs2 (rw)

/mnt/sdcard removable storage (rw)

L

cf. Usual Linux system assumes all file system are read/writable. 11

Today's topic

= Android system architecture
* Init — runtime - Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android

Boot sequence

Androld boot sequence

EE Lt P
EFEErLrrhe
System Services Applications

: A Home
F— FI—I"

SYSICMSerye]

adbd

vold (mount) 15
rild {(radio) T Buiiiling GUI
dfbuggerﬁ .E il LLLLEEL LY S L L FALLLLLL L F"l'E

installd & . :

e fork():

Daemons SErVICEmanager mediaserver

| _3". emdﬂ]‘
---------’ !‘nrk{}
Dalvik
sijegqial_iz_aliun

13
quoted from http://hmtsay.blogspot.com/2010/10/android-startup.html

http://hmtsay.blogspot.com/2010/10/android-startup.html

= located on /init

= need kernel boot parameter to add
“Init=/init”
= Static linked.

= cf. typical linux init is dynamic
linked.

= Doesn't affect even dynamic link
system collapsed.
= http://blog.kmckk.com/archives/3137191.html »

http://blog.kmckk.com/archives/3137191.html

= The standard libraries

= libc, libm, pthread, dynamic linker

= linker has implicit crash dump function
= http://kobablog.wordpress.com/2011/05/12/debuggerd-of-android/

= Came from *BSD, not glibc

= Currently, doesn't support C++ exception
and RTTI.

= latest NDK supports these by static linking.

15

http://kobablog.wordpress.com/2011/05/12/debuggerd-of-android/

= Locate dynamic link libraries ahead of
time.

= 'apriori' command. Different from 'prelink’
command from Red Hat.

= Optimized for small embedded system

= Allocate fixed address to libraries .
= Assume not adding/removing libraries.

= Assume 3GB memory space is large enough
to put all libraries together.

16

Prelink map

build/core/prelink-linux-arm.map

H= = FH S H S

0xC0000000
0xB010000OO
0xB0O00000O
0xA0000000
0x90000000
0x80000000
0x40000000
0x10000000
0x00000000

OxXFFFFFFFF
OxBFFFFFFF
OxBOOFFFFF
OxBFFFFFFF
Ox9FFFFFFF
Ox8FFFFFFF
Ox7/FFFFFFF
Ox3FFFFFFF
OxOFFFFFFF

Kernel

Thread 0 Stack

Linker

Prelinked System Libraries

Prelinked App Libraries
Non-prelinked Libraries
mmap'd stuff
Thread Stacks

.text / .data / heap

core system libraries

libdl.so OxAFF00000 # [<64K]
libc.so OxAFDO0000 # [~2M]
libstdc++.so OxAFCO0000 # [<64K]
libm.so OxAFB0O00O0OO # [~1M]
liblog.so OxAFAOO0000 # [<64K]
libcutils.so OxAF900000 # [~1M]
libthread db.so OxAF800000 # [<64K]
libz.so O0xAF700000 # [~1M]
libevent.so O0xAF600000 # [2727?]
libssl.so OxAF400000 # [~2M]
libcrypto.so OxXAF000000 # [~4M]
libsysutils.so OxAEF00000 # [~1M]

17

quoted from http://worms.zoology.wisc.edu/dd2/echino/cleavage/intro.html

18

http://worms.zoology.wisc.edu/dd2/echino/cleavage/intro.html

Zygote process

Dalvik VM

dynamic link
Classes libraries
N ~N

Child process

Dalvik VM

classes

dynamic link
libraries

”~

Dalvik VM classes

Physical memory space

dynamic link
libraries

(Actually these are mapped by pages.)

19

Zygote

= Zygote process preloads typical (approx. 1800)
classes and dynamic link libraries so that
childlen start quickly.

= Copy-on-write

= Only when new process writes page, new page is
allocated.

= All pages not be written are shared among all
zygote children.

= Exec system call is not used in zygote.

= Exec wipes the page mapping table of the process.
= It means exec discards zygote cache.

20

UID, GID of Applications

= UID(user id) and GID(group id) is used for
managing multi-user in usual Linux
system.

« Android use this mechanism to isolate
applications.

= Each application has unique UID.
= Can not read/write other application's files.

= Zygote is running as UID=0 (root). After
forking child process, its UID is changed
by setuid system call.

21

Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android

Dalvik VM

= executes dex code, which iIs translated
from Java byte code

= 16bit, register based

= cf. Java bytecode is 8bit, stack based

= has JIT from Android 2.2 (Froyo)
= http://blog.kmckk.com/archives/2691473.html

= has concurrent GC from Android 2.3
(Gingerbread)

= http://source.android.com/tech/dalvik/
23

http://blog.kmckk.com/archives/2691473.html
http://source.android.com/tech/dalvik/

Java class libraries

= Different from Java ME, which is used in
traditional Japanese phone.

= Similar to Java SE. But not equal.

= Different window/graphics. No AWT, No
Swing.

= No RMI.
= Take care to use user defined class loader

= dynamic generated classes doesn't work
because Dalvik VM doesn't eat Java class
files but Dex files. y

Caveats of NDK programming

= Dynamic libraries built by NDK are linked
with application process.

= forked from Zygote but UID != 0 (root).
= consider about permissions.

= Don't use fork & exec system calls.

= Back ground process should be made as
android .app.Service.

= Don't use GCC's TLS extension (__thread).

= Simple Android dynamic linker does not support it.
= java.lang.ThreadlLocal is available in Java.

3 commands to invoke Dalvik VM

= [system/bin/app process
= This is the 'Zygote' process.
= [system/bin/dalvikvm
= Similar to usual 'java’ command.
= Try 'dalvikvm -h' to show command line help.
= [system/bin/dvz
= Send request to Zygote process.
= See my blog (Sorry in Japanese)
= http://blog.kmckk.com/archives/3551546.html

26

http://blog.kmckk.com/archives/3551546.html

Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

= How to build Android

Linux kernel

= Many common Linux device drivers are
available.

= Android specific kernel drivers

= binder
= ashmem
wake lock

logger

= http://elinux.org/Android_Kernel Features

= These source code is not yet merged to
kernel main line repository.

28

http://elinux.org/Android_Kernel_Features

= /dev/binder
= Base of Inter Process Method Invocation

= Not for general purpose. Tuned for specific
transaction.

« Multi-thread aware

= Have internal data per thread
= (CF. Socket have internal data per fd.)
= Doesn't use "write” and "read” system calls.
Write and read at once by "ioctl”.
= http://blog.kmckk.com/archives/3676340.html

29

http://blog.kmckk.com/archives/3676340.html

= Android / Anonymous SHared MEMory
subsystem

= $(TOP)/system/core/cutils/ashmem.h

= int ashmem_create_region(const char *name, size_t size)
— returns fd

= int ashmem_set prot_region(int fd, int prot)
= int ashmem_pin_region(int fd, size t offset, size tlen)
= int ashmem_unpin_region(int fd, size t offset, size t len)

= Kernel reclaims not ‘pin’ ed memory

= Similar to weak reference of Java. Useful to
Implement cache.

= android.os.MemoryFile from Java program

30

= Lock to prevent entering sleep mode.

= My memos

= http://blog.kmckk.com/archives/3298375.html
= http://blog.kmckk.com/archives/3304836.html

= eLinux wiki

= http://elinux.org/Android_Power Management

31

http://blog.kmckk.com/archives/3298375.html
http://blog.kmckk.com/archives/3304836.html
http://elinux.org/Android_Power_Management

= kernel implementation to support
Android's AlarmManager.

= \Wake up even when it was in sleep mode.

32

Low memory Kkiller

= At the shortage of memory, the kernel

select a process seems low priority and
kill it. (1)

= It's OK. because specification in the
Android application life cycle, application
should be preserve its own status.

= http://blog.kmckk.com/archives/2795577 .html

33

http://blog.kmckk.com/archives/2795577.html

= Android has unique system-wide log
system

= http://blog.kmckk.com/archives/2936958.html

" http://elinux.org/Android _Logging System

34

http://blog.kmckk.com/archives/2936958.html
http://elinux.org/Android_Logging_System

Overview of Android Logging System

Target
Java program
prog System.out
/System.err
Native program android. util.Log m—"Cr-ancrocitemal s Host
DDMS
stdout 1
logcat
stdout liblog
[stderr adbd adbserver
User
Kernel adb logcat
< 3
s [
logger 64KB
—
/dev/log/main i — = /dev/log/main
/dev/log/radio w /dev/log/radio
/dev/log/event 256KB /dev/log/event
/dev/log/system 64KB /dev/log/system 35

Today's topic

= Android system architecture
= Init — runtime — Zygoto
= Dalvik VM

= Android specific kernel
drivers

« How to build Android

How to build Android

= All source code is available for download

= except Google specific services (Google
map, Android market, ...)

= Easy to download source and build them

= See AOSP web site
= http://source.android.com/
= Or, my blog
= http://blog.kmckk.com/archives/3722957.html

37

http://source.android.com/
http://blog.kmckk.com/archives/3722957.html

Conclusion

= Android system architecture is totally
different from normal Linux systems.

= Android uses Linux kernel only,
further more, adding android specific
kernel drivers.

= Designed for Java applications.
= Tuned for small system.

38

Thank you for listening!
Any comments to blogs are welcome.

39

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39

