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Two presentations in one

• Introduction to Fuego
• For people learning Fuego

• Status and Future Directions
• For people interested in open source test 

frameworks
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Introduction

Fuego = Jenkins +
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abstraction scripts +
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abstraction scripts + 
pre-packaged tests
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Introduction

Fuego = (Jenkins + 
abstraction scripts + 
pre-packaged tests) 
inside a container
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Jenkins

• Is a Continuous Integration system
• Launches test jobs based on various triggers
• Shows test results
• Has an ecosystem of plugins for extended 

functionality
• Integration with different source code management 

systems
• E-mail notifications
• Different interface views
• Plotting of results

• Is too big a system to describe in detail here
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Jenkins

• Base interface:

Test history and
test selection
dashboard

• Fuego includes customizations to Jenkins to 
support host/target test configurations

• Pre-install plugins for interface changes, 
plotting and other stuff
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A closer look
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Abstraction scripts

• User defines a few variables in shell scripts, 
to allow system to interact with target boards

• Fuego provides shell functions for command 
and control of target:
• Put/get files, execute commands, collect logs, 

etc.
• Fuego generates a full test script at runtime, 

based on board configuration, toolchain
variables, and test variables
• This allows all aspects of tests to be abstracted

• This is a bigger deal than it sounds like
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Pre-packaged tests

• Comes with over 50 tests, already integrated
• aim7, blobsalad, bonnie, cyclitest, dbench, 

dhrystone, ebizzy, ffsb, fio, GLMark, gtkperf, 
hackbench, himeno, Interbench, IOzone, iperf, Java, 
linpack, lmbench2, nbench, netperf, netpipe, 
OpenSSL, reboot, signaltest, Stream, tiobench, 
whetstone, x11perf, aiostress, arch_timer, bzip2, 
cmt, crashme, expat, fontconfig, glib, ipv6connect, 
jpeg, libpng, linus_stress, LTP, netperf, 
posixtestsuite, rmaptest, scifab, scrashme, sdhi_o, 
stress, synctest, zlib

• Includes functional, benchmark and stress 
tests
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Test building

• Tests are built from source
• You can use your own toolchain (/sdk)

• Or use a pre-installed generic arm toolchain
• There’s an Open Embedded meta-layer 

available, to help you build your own SDK in 
Yocto Project/Open Embedded
• Generated SDK will have libraries and headers 

needed for building all tests
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Inside a container

• Fuego builds a docker container
• This avoids a lot of install issues

• Fuego can run on any Linux distro
• Builds of the test programs are 100% 

reproducible
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Architecture

• 2 major parts used for configuration:
• Jenkins front-end
• Script back-end

• Back-end is (mostly) shell-script based
• Main interface between Jenkins and test 

programs is a single shell script
• Shell is lowest common denominator language

• Very small files (glue layer) required for:
• Log parsing
• Results plotting
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Architecture Diagram

Host machine:

Docker
container:

Target board

Web
control 
interfaceToolchains

Config
Builds
Logs

Volume
Mount

Container build system

Jenkins
Test programs
Scripts



ConfidentialPA110/23/201419

How deployed

• Comes as 2 git repositories:
• ‘fuego’ repository - Stuff outside the container

• Container build system
• Including some Jenkins plugins

• Default config and boards
• Host scripts for controlling the container
• Documentation

• ‘fuego-core’ repository - Stuff inside the container
• Script and overlay engine
• Pre-packaged tests
• More jenkins extensions

• Fuego-core is downloaded for you during the 
container image build
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Getting it and using it

• git clone https://bitbucket.org/tbird20d/fuego.git
• cd fuego ; ./install.sh

(wait a bit)
• fuego-host-scripts/docker-create-container.sh
• fuego-host-scripts/docker-start-container.sh
• firefox http://localhost:8080/fuego

• Optionally, to get additional shell prompts inside the 
container:
• docker exec  -i –t <container_id> bash
• sshd <user>@localhost –p 2222

• Requires that you create a user account inside the container
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Main dashboard
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Architecture details

• How a test is defined
• Test phases
• Overlay generation
• Test parameter abstraction
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Test definition

• A Fuego test consists of:
• Jenkins test definition – defines variables 

needed by Jenkins to execute the test
• Base script – a shell script which runs on the 

host, which controls the execution of the test
• Test program - an executable or script to run on 

the target
• Test variables – test specs and test plans that 

are used to control the test
• Results parser – tells the system how to 

interpret results from the test log



ConfidentialPA110/23/201424

Test Phases

• Each test executes through phases
• Pre_test – prepare target, check for dependencies
• Build – compile the test program
• Deploy – transfer the test program (and associated 

materials) to the target
• Run – execute the program, on target, logging the 

results
• Processing – collect the logs and parse for results
• Post_test – clean up target and finalize Jenkins job 

status
• Phase can be empty if not needed:

• For example, if no build step is needed
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Fuego test phases
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Test execution flow

1. Jenkins initiates a test (Jenkins test job)
• Based on user input or some condition or trigger2. Jenkins job starts the base script for a test
• Overlay generator creates an expanded script and 

sources that into the base script
• The test script executes through the test phases3. Jenkins collects the console log during execution, 
and times the result
• Fuego scripts collect the test log and parse the results4. Jenkins executes the post_test step, using the 
expanded script
• More logs are collected
• Jenkins job status is updated5. Jenkins interface can be used to see test results
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Shell script example

#!/bin/bash

tarball=hello-test-1.1.tgz

function test_build {
make && touch test_suite_ready || build_error "error while building test"

}

function test_deploy {
put hello  $FUEGO_HOME/fuego.$TESTDIR/

}

function test_run {
report "cd $FUEGO_HOME/fuego.$TESTDIR; ./hello $FUNCTIONAL_HELLO_WORLD_ARG“

}

function test_processing {
log_compare "$TESTDIR" "1" "SUCCESS" "p"

}

. $FUEGO_SCRIPTS_PATH/functional.sh
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Overlay generation

• Each test has a simple base script
• Fuego generates the test environment 

(expanded script) at test execution time 
using an overlay generator
• Kind of like “object oriented” programming for 

shell scripts
• Four areas of overlayed functions and 

variables
• Functions to interact with target

• Board definitions
• Toolchain variables
• Test parameters

• Indirection for test program parameters
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Overlay processing

<board>.conf

tools.sh

testplan

ovgen.py

test specs

test-script.sh

test_build()
test_deploy()
test_run()
test_processing()

<target>_prolog.sh

functional.sh

functions.sh
common.sh
overlays.sh
reports.sh
etc.

Base script

Expanded script

Fuego functions
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Test parameter abstraction

• Abstractions mean tests can run in multiple 
configurations

• Fuego abstracts details about the target 
board and toolchain:
• IP address, login, target access methods
• PLATFORM indicates toolchain to use

• Fuego also abstracts:
• Filesystem device and mount points
• Test program arguments
• Expected results

• User can add new items to be abstracted, 
through test spec/test plan system
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Running a test (manually)

• Select a test
• Select the target
• Select the testplan
• Push “Run the test”
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Fuego tests page
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Individual test page
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Customization

• Add a board configuration
• Add a toolchain
• Add a test
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Add a board

• Overview:
• Add a board file
• Add the new target in the Jenkins interface
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The board file

• Board file is a shell script with some variable 
that describe the board

• Create file in userdata/conf/boards, with
filename “<target-name>.board”
• There are examples there already

• Define IP address, ssh port, file system info 
(device, partitions, etc.)

• PLATFORM - indicates which SDK to use 
for building test programs



ConfidentialPA110/23/201438

Board file sample (qemu-arm)
inherit "base-board"
include "base-params"

IPADDR="172.17.0.1"
SSH_PORT=5555
LOGIN="root"
FUEGO_HOME="/home/a"
PASSWORD="adm"
PLATFORM="qemu-armv7hf"
TRANSPORT="ssh"
ARCHITECTURE="arm"

SATA_DEV="/dev/sdb1"
SATA_MP="/mnt/sata"

USB_DEV="/dev/sda1"
USB_MP="/mnt/usb"

MMC_DEV="/dev/mmcblk0p2"
MMC_MP="/mnt/mmc"

LTP_OPEN_POSIX_SUBTEST_COUNT_POS="1319"
LTP_OPEN_POSIX_SUBTEST_COUNT_NEG="169"

EXPAT_SUBTEST_COUNT_POS="1769“”
EXPAT_SUBTEST_COUNT_NEG="41"
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Add the target in Jenkins

• Go to Target Status in main screen
• Select “New Node”

• Enter name, and copy from “template-dev”
• Reference the board file

• Set Environment Variable BOARD_OVERLAY
to “boards/<target-name>.board”
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Interface for adding a board
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Adding a toolchain

• Generic qemu ARM toolchain is pre-installed
• To install your own (overview):

• Obtain or build your SDK
• Install it inside the container in 

/userdata/toolchains
• Modify /userdata/conf/tools.sh to reference it
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Get SDK into the container

• To build the SDK in Yocto Project:
• Inside your yocto build directory:

• bitbake <image-name> -c do_populate_sdk
• docker ps (note the container id)
• docker cp tmp/deploy/sdk/poky-*.sh <container-id>:/tmp

• Install the SDK in the container:
• At the shell inside the container:

• /tmp/poky-....sh
• (specify an installation path under /userdata/toolchains,
like: /userdata/toolchains/poky/2.0.1)
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Tell Fuego about SDK

• Add a new “xxx-tools.sh” file for this toolchain
• Determine a platform name (e.g. foo)
• Create file: /userdata/toolchains/xxx-tools.sh

• e.g. /userdata/toolchains/foo-tools.sh
• Export variables needed by the toolchain in the file

• e.g. PREFIX, ARCH, CC, AS, LD, etc.
• Can source a Yocto Project environment_setup

script
• In this case, set SDKROOT variable

• See qemu-armv7hf-tools.sh and lager-tools.sh for 
examples

• Set PLATFORM environment variable in board 
file
• e.g. PLATFORM=“foo”
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Adding a test - overview

• A Fuego test consists of:
• Actual test program (the thing that runs on the 

target)
• Shipped as source

• Test shell script
• Results parser script (for benchmarks)
• Results evaluator expression (for benchmarks)
• Jenkins test declaration

• Test can be Functional or Benchmark
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Functional tests

• Detects regressions
• Result is pass/fail
• Stress tests are defined as functional tests
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Benchmark tests

• Integrated plotting
• Parser to obtain value from test log
• Specification for data name and threshold 

for pass/fail
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Test program

• Usually a pre-existing, compiled test 
program

• Source and patches are shipped in fuego-
core repository

• Is cross-compiled by fuego for each target
• Can use one already in your distribution

• Use ‘is_on_target()’ function to locate it
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Test script

• Shell script describes how to:
• Build the test program (if applicable)
• Deploy the test to the target
• Execute the test on target, and collect results
• Test for success or failure, by examining the log

• Can define the following functions:
• test_pre_check, test_build, test_deploy, 

test_run, test_processing
• Include a fuego engine script
• Script calls fuego functions to perform 

operations with the target
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Fuego functions

• Fuego functions available in test scripts:
• put/get – transfer files to/from target
• cmd – execute command on target
• report – execute command, and put results in log
• log_compare – check log for a pattern, to check for 

pass or fail
• hd_test_mount_prepare – mount a filesystem for a 

test
• hd_test_clean_umount – unmount a filesystem after a 

test
• There are more

• See examples in other scripts and wiki page:
• http://bird.org/fuego/Test_Script_APIs
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Shell script example
tarball=synctest.tar.gz

function test_build {
make && touch test_suite_ready || build_error "error while building  test"

} 

function test_deploy {
put synctest $FUEGO_HOME/fuego.$TESTDIR/

}

function test_run {
assert_define FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV
assert_define FUNCTIONAL_SYNCTEST_MOUNT_POINT
assert_define FUNCTIONAL_SYNCTEST_LEN
assert_define FUNCTIONAL_SYNCTEST_LOOP

hd_test_mount_prepare $FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV \
$FUNCTIONAL_SYNCTEST_MOUNT_POINT

report "cd $FUNCTIONAL_SYNCTEST_MOUNT_POINT/fuego.\
$TESTDIR; $FUEGO_HOME/fuego.$TESTDIR/synctest \
$FUNCTIONAL_SYNCTEST_LEN  \
$FUNCTIONAL_SYNCTEST_LOOP"

hd_test_clean_umount $FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV \
$FUNCTIONAL_SYNCTEST_MOUNT_POINT

}

function test_processing {
log_compare "$TESTDIR" "1" "PASS : sync interrupted" "p"

}

. $FUEGO_SCRIPTS_PATH/functional.sh
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Benchmark extras

• Extra files for plotting benchmark data
• Parser.py, reference.log and tests.info

• Parse the test results (parser.py)
• Extract data from the log, using a regular 

expression, and format it into a python map
• Specify threshold for pass/fail (reference.log)

• Put an expression in reference.log file
• Indicate the variable(s) to plot (tests.info)

• Global file tests.info has lines for all tests’ 
plottable variable
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Plot example
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Vision

• (See next presentation)
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Resources

• Wiki: http://bird.org/fuego/FrontPage
• http://bird.org/fuego/Fuego_Quickstart_Guide
• Mail list:

• https://lists.linuxfoundation.org/mailman/listinfo/fuego
• Mail to: fuego@lists.linuxfoundation.org
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Outline

• Vision
• Recent activity
• Future directions
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Vision

Do for testing
what open source has done

for coding
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Testing problem

• Much of testing is ad-hoc
• Custom in-house work
• LOTS of manual steps• There are open source test programs
• Can collaborate on these as coding projects

• LTP, bonnie, cyclictest, netperf, …
• Test frameworks have parts of the puzzle:

• Jenkins, LAVA, KernelCI• Key pieces are left to the user:
• What tests to run
• How to run the test programs

• How to customize tests for different scenarios
• How to automate tests

• How to interpret the results
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Solution

• Reduce duplication of effort in testing
• Allow developers and testers to share effort 

that each company is doing by itself
• Strategy:

• Identify manual steps
• Capture them
• Create ways to share “test collateral”

• Test framework has to gain popularity to 
create “community effect”

• Focus on real tests and test results
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Required features

• Allow quick and easy setup
• Support a wide variety of configurations and 

build systems 
• Yocto Project/OE, Buildroot, etc.

• Support a wide variety of targets
• Support a wide variety of connection types:

• serial, ssh, adb, ttc
• Make it easy to create and publish new tests
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Vision of sharing

• Need to share test experience and collateral
• Not just test programs

• Test results based on boards, distros, hardware
• Parsing methods
• Test parameters

• “Test app store”
• Thousands of tests to choose from

• Results from tens of thousands of test nodes
• Crowdsourced results (e.g. Wikipedia)
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Increased automation

• Need heterogeneous, multi-node testing
• Test environment is more than just the Linux 

distribution on the machine, with local hardware
• Lots of tests need other endpoints or external 

hardware to communicate with
• USB, i2c, Ethernet, wifi, canbus, video/audio inputs 

and outputs
• These are the hardest tests to automate

• Require specialized hardware or configuration
• E.g. USB switcher, CANbus packet injector

• Make it possible to share these rare setups
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Increased hardware coverage

• Big problem in Linux kernel community is 
testing on different hardware, to ensure 
things don’t break as patches are accepted 
upstream

• Most successful board-level project is 
KernelCI
• 10 labs, 160 boards, 2 million boots

• Want to do same thing, but with individual 
boards
• Not necessarily kernel testing
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• Ten thousand test nodes
• Ability to run tests at request of community

• Ability to customize a test to find individual bugs
• Example workflow:

• User reports a bug on hardware xyz
• Developer runs test on node 2374 to reproduce

• Requires granting access to 3rd parties
• Requires trust network

• Use same mechanisms as kernel:
• Traceable affidavit
• Signing
• Validation

Sharing hardware
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Recent Activity
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Recent Activity

• Survey of test tools
• Collection of test stories
• Recent Fuego work
• Branding
• Infrastructure
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Other test tools

• LAVA
• KernelCI
• KSelftest
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LAVA

• Linaro’s test framework
• Is a very powerful test scheduler

• Understands how to interact with many boards 
and bootloaders

• Has a very scalable, secure architecture
• Does not include tests themselves
• Is pretty darn complex
• Is in midst of version change (to 2.0)
• Used by AGL-JTA (Fuego precursor for 

Linux Foundation automotive group) for 
board management
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KernelCI

• Project by Linaro specifically designed to 
find kernel boot regressions
• 10 labs, 160 boards, 2 million boots
• Testing many upstream source trees

• Centralized management of test system
• Have good support for board farms (via 

LAVA)
• Have results aggregation and comparison
• Has track record of actual fixes based on 

bugs found (~165)
• Focus only on boot testing for now
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KSelftest

• Kernel unit test framework
• Has tests for individual kernel sub-systems
• Has no automation

• No output consistency
• Requires a human to interpret output of each test

• No notion of multi-node testing that I’m aware of
• Is relatively new

• Kernel version 4.1 can install test on target
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Test tools conclusion

• Test frameworks focus on different parts of 
the overall test picture
• None focused on abstracting test invocation and 

analysis
• Should figure out how to collaborate on 

common pieces
• Make standards so that all tools, labs, tests, 

benefit from improvements
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Test Stories

• Collected test stories at Linaro Connect and 
ELC Europe

• May collect more at future events
• Haven’t posted on wiki yet…
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Results of “test stories” 
survey

• Everyone wants to test something different
• Lots of manual activities
• Hard to convert from manual to automated

• Every board and configuration has quirks
• Need to control external entities during test

• Heterogenous multi-node
• eg canbus, wifi, Ethernet, video input, i2c devices, etc.

• No sharing of test collateral
• How to share “test expertise”?
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Recent Fuego work

• test_pre_check
• “ftc” tool
• Documentation
• Proxy support
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test_pre_check()

• New optional base script function to support 
pre-testing the target and environment

• Added is_on_target() helper routine
• To detect binaries on the target
• Avoid building test program if it’s already in the 

distribution
• Plan to move ASSERT_DEFINES into 

test_pre_check() function
• Abort the test early if target or environment is 

missing key feature
• Maybe give a different error

• E.g. ‘configuration problem’ or ‘unmet dependencies’
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‘ftc’ tool

• Ability to add, update test variables in board 
file

• Test can store persistent information about a 
board

• Purpose is to support target probing and 
saving of found information

• Ability to launch a test from command line
• Ability to query targets and tests



ConfidentialPA110/23/201479

Documentation

• Test APIs
• Have templates for test API documentation
• Have about 50% of functions documented

• More docs about fuego details:
• phases, logs, environment variables, etc.
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Proxy support

• Allow for installation inside a corporate 
firewall

• Patches submitted by Daniel Sangorrini
• Still processing them (sorry Daniel)
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Branding

• Name change from JTA in March
• Official logo:

• Red, bold, Arial, slightly rotated:

• Vertical flames:

• Official candy:
• Hot Tamales

• Spicy cinnamon



ConfidentialPA110/23/201482

What is “Fuego”?

• Fuego = Tierra del Fuego - one of the places 
on earth where penguins live

• Fuego = Fire – often associated with trials 
and purifying

• Fuego – it sounds neat
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Fuego

It’s hot!
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Infrastructure

• Web site (wiki)
• http://bird.org/fuego/FrontPage

• Mail list:
• https://lists.linuxfoundation.org/mailman/listinfo/fuego
• Mail to: fuego@lists.linuxfoundation.org

• Virtual private server
• Purpose is for online demos, and for people to try 

out the interface, without installing the tool
• Not populated yet

• Working on qemu issues on VPS
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Future Directions
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Future directions

• Easier installation and setup maintenance
• Target dictionary
• Test packages
• Test interface standards
• Other stuff
• What Fuego is not…
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Easier installation

• Tools to assist installation
• Provide “myboard” and set a few params (and 

maybe rename it) with the command line tool
• No editing of files!

• Provide a container on docker hub to 
eliminate install phase completely, for most 
users

• Health check test
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“Target dictionary”

• Defined place for per-board test parameters 
and collateral

• Re-organization of test specs and test plans
• Ties in to sharing test collateral

• E.g. if someone has stuff working on a beagle-
board, they should share their results

• ‘ftc’ tool is precursor to this
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Test packages

• Make tests separate from the framework
• Define what needs to be shared

• Collect materials that are scattered all over in 
the repository: test script, source, jenkins config, 
test specs, test plans, log parser

• Test plugin architecture
• Tool to manage packages:

• Ability to install individual test
• Create a package from existing materials
• Publish a test package

• Import via package or git repository
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Test interfaces standards

• Allow multiple front-ends and back-ends
• Board control interface
• Hardware and firmware recommendations

• Eg “expose a serial console”, “support tftp boot”
• Compliance tests and ratings
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Other stuff

• Self-tests for the test framework
• Matrix of tests vs. board results
• More tests

• Refine the board bringup tests from Renesas
• kselftest
• Kernelci – kernel boot test

• Waiting for serial console support
• Move official docs to ascii-doc (or some 

other markdown)



ConfidentialPA110/23/201492

Other stuff (cont.)

• De-clutter the Jenkins
front end

• Improve documentation (more)
• Handle USB connections

• For ADB-based targets
• For Sony debug board

• Support for boards with only a serial console
• Have contractor for this work (Lineo Solutions)
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What Fuego is NOT

• Board farm tool
• Can support multiple nodes, but that’s not the 

focus
• Handling the scalability of board farms is difficult 

and requires extra hardware
• Focus on a single developer testing a single 

board
• To scale out, make more host nodes

• Test results aggregator (yet)
• This will come in time.  Focus for now is on 

scaling out the actual tests
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Stuff deferred

• Send data to centralized repository
• Make it possible to join a decentralized test 

network
• Help solve the “developer can’t test on different 

harware” problem
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Thanks
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