
ConfidentialPA110/23/20141

Fuego

Fuego:
Introduction, Status

and Future Directions
Tim Bird

Architecture Group Chair
LF CE Workgroup

1

ConfidentialPA110/23/20142

Two presentations in one

• Introduction to Fuego
• For people learning Fuego

• Status and Future Directions
• For people interested in open source test

frameworks

ConfidentialPA110/23/20143

Fuego

Introduction to the
Fuego

Test System
Tim Bird

Architecture Group Chair
LF Core Embedded Linux Project

3

ConfidentialPA110/23/20144

Outline

Introduction
Architecture
Customization
Vision

4

ConfidentialPA110/23/20145

Introduction

Fuego = Jenkins +

ConfidentialPA110/23/20146

Introduction

Fuego = Jenkins +
abstraction scripts +

ConfidentialPA110/23/20147

Introduction

Fuego = Jenkins +
abstraction scripts +
pre-packaged tests

ConfidentialPA110/23/20148

Introduction

Fuego = (Jenkins +
abstraction scripts +
pre-packaged tests)
inside a container

ConfidentialPA110/23/20149

Jenkins

• Is a Continuous Integration system
• Launches test jobs based on various triggers
• Shows test results
• Has an ecosystem of plugins for extended

functionality
• Integration with different source code management

systems
• E-mail notifications
• Different interface views
• Plotting of results

• Is too big a system to describe in detail here

ConfidentialPA110/23/201410

Jenkins

• Base interface:

Test history and
test selection
dashboard

• Fuego includes customizations to Jenkins to
support host/target test configurations

• Pre-install plugins for interface changes,
plotting and other stuff

ConfidentialPA110/23/201411

A closer look

ConfidentialPA110/23/201412

Abstraction scripts

• User defines a few variables in shell scripts,
to allow system to interact with target boards

• Fuego provides shell functions for command
and control of target:
• Put/get files, execute commands, collect logs,

etc.
• Fuego generates a full test script at runtime,

based on board configuration, toolchain
variables, and test variables
• This allows all aspects of tests to be abstracted

• This is a bigger deal than it sounds like

ConfidentialPA110/23/201413

Pre-packaged tests

• Comes with over 50 tests, already integrated
• aim7, blobsalad, bonnie, cyclitest, dbench,

dhrystone, ebizzy, ffsb, fio, GLMark, gtkperf,
hackbench, himeno, Interbench, IOzone, iperf, Java,
linpack, lmbench2, nbench, netperf, netpipe,
OpenSSL, reboot, signaltest, Stream, tiobench,
whetstone, x11perf, aiostress, arch_timer, bzip2,
cmt, crashme, expat, fontconfig, glib, ipv6connect,
jpeg, libpng, linus_stress, LTP, netperf,
posixtestsuite, rmaptest, scifab, scrashme, sdhi_o,
stress, synctest, zlib

• Includes functional, benchmark and stress
tests

ConfidentialPA110/23/201414

Test building

• Tests are built from source
• You can use your own toolchain (/sdk)

• Or use a pre-installed generic arm toolchain
• There’s an Open Embedded meta-layer

available, to help you build your own SDK in
Yocto Project/Open Embedded
• Generated SDK will have libraries and headers

needed for building all tests

ConfidentialPA110/23/201415

Inside a container

• Fuego builds a docker container
• This avoids a lot of install issues

• Fuego can run on any Linux distro
• Builds of the test programs are 100%

reproducible

ConfidentialPA110/23/201416

Outline

Introduction
Architecture
Customization
Vision

16

ConfidentialPA110/23/201417

Architecture

• 2 major parts used for configuration:
• Jenkins front-end
• Script back-end

• Back-end is (mostly) shell-script based
• Main interface between Jenkins and test

programs is a single shell script
• Shell is lowest common denominator language

• Very small files (glue layer) required for:
• Log parsing
• Results plotting

ConfidentialPA110/23/201418

Architecture Diagram

Host machine:

Docker
container:

Target board

Web
control
interfaceToolchains

Config
Builds
Logs

Volume
Mount

Container build system

Jenkins
Test programs
Scripts

ConfidentialPA110/23/201419

How deployed

• Comes as 2 git repositories:
• ‘fuego’ repository - Stuff outside the container

• Container build system
• Including some Jenkins plugins

• Default config and boards
• Host scripts for controlling the container
• Documentation

• ‘fuego-core’ repository - Stuff inside the container
• Script and overlay engine
• Pre-packaged tests
• More jenkins extensions

• Fuego-core is downloaded for you during the
container image build

ConfidentialPA110/23/201420

Getting it and using it

• git clone https://bitbucket.org/tbird20d/fuego.git
• cd fuego ; ./install.sh

(wait a bit)
• fuego-host-scripts/docker-create-container.sh
• fuego-host-scripts/docker-start-container.sh
• firefox http://localhost:8080/fuego

• Optionally, to get additional shell prompts inside the
container:
• docker exec -i –t <container_id> bash
• sshd <user>@localhost –p 2222

• Requires that you create a user account inside the container

ConfidentialPA110/23/201421

Main dashboard

ConfidentialPA110/23/201422

Architecture details

• How a test is defined
• Test phases
• Overlay generation
• Test parameter abstraction

ConfidentialPA110/23/201423

Test definition

• A Fuego test consists of:
• Jenkins test definition – defines variables

needed by Jenkins to execute the test
• Base script – a shell script which runs on the

host, which controls the execution of the test
• Test program - an executable or script to run on

the target
• Test variables – test specs and test plans that

are used to control the test
• Results parser – tells the system how to

interpret results from the test log

ConfidentialPA110/23/201424

Test Phases

• Each test executes through phases
• Pre_test – prepare target, check for dependencies
• Build – compile the test program
• Deploy – transfer the test program (and associated

materials) to the target
• Run – execute the program, on target, logging the

results
• Processing – collect the logs and parse for results
• Post_test – clean up target and finalize Jenkins job

status
• Phase can be empty if not needed:

• For example, if no build step is needed

ConfidentialPA110/23/201425

Fuego test phases

ConfidentialPA110/23/201426

Test execution flow

1. Jenkins initiates a test (Jenkins test job)
• Based on user input or some condition or trigger2. Jenkins job starts the base script for a test
• Overlay generator creates an expanded script and

sources that into the base script
• The test script executes through the test phases3. Jenkins collects the console log during execution,
and times the result
• Fuego scripts collect the test log and parse the results4. Jenkins executes the post_test step, using the
expanded script
• More logs are collected
• Jenkins job status is updated5. Jenkins interface can be used to see test results

ConfidentialPA110/23/201427

Shell script example

#!/bin/bash

tarball=hello-test-1.1.tgz

function test_build {
make && touch test_suite_ready || build_error "error while building test"

}

function test_deploy {
put hello $FUEGO_HOME/fuego.$TESTDIR/

}

function test_run {
report "cd $FUEGO_HOME/fuego.$TESTDIR; ./hello $FUNCTIONAL_HELLO_WORLD_ARG“

}

function test_processing {
log_compare "$TESTDIR" "1" "SUCCESS" "p"

}

. $FUEGO_SCRIPTS_PATH/functional.sh

ConfidentialPA110/23/201428

Overlay generation

• Each test has a simple base script
• Fuego generates the test environment

(expanded script) at test execution time
using an overlay generator
• Kind of like “object oriented” programming for

shell scripts
• Four areas of overlayed functions and

variables
• Functions to interact with target

• Board definitions
• Toolchain variables
• Test parameters

• Indirection for test program parameters

ConfidentialPA110/23/201429

Overlay processing

<board>.conf

tools.sh

testplan

ovgen.py

test specs

test-script.sh

test_build()
test_deploy()
test_run()
test_processing()

<target>_prolog.sh

functional.sh

functions.sh
common.sh
overlays.sh
reports.sh
etc.

Base script

Expanded script

Fuego functions

ConfidentialPA110/23/201430

Test parameter abstraction

• Abstractions mean tests can run in multiple
configurations

• Fuego abstracts details about the target
board and toolchain:
• IP address, login, target access methods
• PLATFORM indicates toolchain to use

• Fuego also abstracts:
• Filesystem device and mount points
• Test program arguments
• Expected results

• User can add new items to be abstracted,
through test spec/test plan system

ConfidentialPA110/23/201431

Running a test (manually)

• Select a test
• Select the target
• Select the testplan
• Push “Run the test”

ConfidentialPA110/23/201432

Fuego tests page

ConfidentialPA110/23/201433

Individual test page

ConfidentialPA110/23/201434

Outline

Introduction
Architecture
Customization
Vision

34

ConfidentialPA110/23/201435

Customization

• Add a board configuration
• Add a toolchain
• Add a test

ConfidentialPA110/23/201436

Add a board

• Overview:
• Add a board file
• Add the new target in the Jenkins interface

ConfidentialPA110/23/201437

The board file

• Board file is a shell script with some variable
that describe the board

• Create file in userdata/conf/boards, with
filename “<target-name>.board”
• There are examples there already

• Define IP address, ssh port, file system info
(device, partitions, etc.)

• PLATFORM - indicates which SDK to use
for building test programs

ConfidentialPA110/23/201438

Board file sample (qemu-arm)
inherit "base-board"
include "base-params"

IPADDR="172.17.0.1"
SSH_PORT=5555
LOGIN="root"
FUEGO_HOME="/home/a"
PASSWORD="adm"
PLATFORM="qemu-armv7hf"
TRANSPORT="ssh"
ARCHITECTURE="arm"

SATA_DEV="/dev/sdb1"
SATA_MP="/mnt/sata"

USB_DEV="/dev/sda1"
USB_MP="/mnt/usb"

MMC_DEV="/dev/mmcblk0p2"
MMC_MP="/mnt/mmc"

LTP_OPEN_POSIX_SUBTEST_COUNT_POS="1319"
LTP_OPEN_POSIX_SUBTEST_COUNT_NEG="169"

EXPAT_SUBTEST_COUNT_POS="1769“”
EXPAT_SUBTEST_COUNT_NEG="41"

ConfidentialPA110/23/201439

Add the target in Jenkins

• Go to Target Status in main screen
• Select “New Node”

• Enter name, and copy from “template-dev”
• Reference the board file

• Set Environment Variable BOARD_OVERLAY
to “boards/<target-name>.board”

ConfidentialPA110/23/201440

Interface for adding a board

ConfidentialPA110/23/201441

Adding a toolchain

• Generic qemu ARM toolchain is pre-installed
• To install your own (overview):

• Obtain or build your SDK
• Install it inside the container in

/userdata/toolchains
• Modify /userdata/conf/tools.sh to reference it

ConfidentialPA110/23/201442

Get SDK into the container

• To build the SDK in Yocto Project:
• Inside your yocto build directory:

• bitbake <image-name> -c do_populate_sdk
• docker ps (note the container id)
• docker cp tmp/deploy/sdk/poky-*.sh <container-id>:/tmp

• Install the SDK in the container:
• At the shell inside the container:

• /tmp/poky-....sh
• (specify an installation path under /userdata/toolchains,
like: /userdata/toolchains/poky/2.0.1)

ConfidentialPA110/23/201443

Tell Fuego about SDK

• Add a new “xxx-tools.sh” file for this toolchain
• Determine a platform name (e.g. foo)
• Create file: /userdata/toolchains/xxx-tools.sh

• e.g. /userdata/toolchains/foo-tools.sh
• Export variables needed by the toolchain in the file

• e.g. PREFIX, ARCH, CC, AS, LD, etc.
• Can source a Yocto Project environment_setup

script
• In this case, set SDKROOT variable

• See qemu-armv7hf-tools.sh and lager-tools.sh for
examples

• Set PLATFORM environment variable in board
file
• e.g. PLATFORM=“foo”

ConfidentialPA110/23/201444

Adding a test - overview

• A Fuego test consists of:
• Actual test program (the thing that runs on the

target)
• Shipped as source

• Test shell script
• Results parser script (for benchmarks)
• Results evaluator expression (for benchmarks)
• Jenkins test declaration

• Test can be Functional or Benchmark

ConfidentialPA110/23/201445

Functional tests

• Detects regressions
• Result is pass/fail
• Stress tests are defined as functional tests

ConfidentialPA110/23/201446

Benchmark tests

• Integrated plotting
• Parser to obtain value from test log
• Specification for data name and threshold

for pass/fail

ConfidentialPA110/23/201447

Test program

• Usually a pre-existing, compiled test
program

• Source and patches are shipped in fuego-
core repository

• Is cross-compiled by fuego for each target
• Can use one already in your distribution

• Use ‘is_on_target()’ function to locate it

ConfidentialPA110/23/201448

Test script

• Shell script describes how to:
• Build the test program (if applicable)
• Deploy the test to the target
• Execute the test on target, and collect results
• Test for success or failure, by examining the log

• Can define the following functions:
• test_pre_check, test_build, test_deploy,

test_run, test_processing
• Include a fuego engine script
• Script calls fuego functions to perform

operations with the target

ConfidentialPA110/23/201449

Fuego functions

• Fuego functions available in test scripts:
• put/get – transfer files to/from target
• cmd – execute command on target
• report – execute command, and put results in log
• log_compare – check log for a pattern, to check for

pass or fail
• hd_test_mount_prepare – mount a filesystem for a

test
• hd_test_clean_umount – unmount a filesystem after a

test
• There are more

• See examples in other scripts and wiki page:
• http://bird.org/fuego/Test_Script_APIs

ConfidentialPA110/23/201450

Shell script example
tarball=synctest.tar.gz

function test_build {
make && touch test_suite_ready || build_error "error while building test"

}

function test_deploy {
put synctest $FUEGO_HOME/fuego.$TESTDIR/

}

function test_run {
assert_define FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV
assert_define FUNCTIONAL_SYNCTEST_MOUNT_POINT
assert_define FUNCTIONAL_SYNCTEST_LEN
assert_define FUNCTIONAL_SYNCTEST_LOOP

hd_test_mount_prepare $FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV \
$FUNCTIONAL_SYNCTEST_MOUNT_POINT

report "cd $FUNCTIONAL_SYNCTEST_MOUNT_POINT/fuego.\
$TESTDIR; $FUEGO_HOME/fuego.$TESTDIR/synctest \
$FUNCTIONAL_SYNCTEST_LEN \
$FUNCTIONAL_SYNCTEST_LOOP"

hd_test_clean_umount $FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV \
$FUNCTIONAL_SYNCTEST_MOUNT_POINT

}

function test_processing {
log_compare "$TESTDIR" "1" "PASS : sync interrupted" "p"

}

. $FUEGO_SCRIPTS_PATH/functional.sh

ConfidentialPA110/23/201451

Benchmark extras

• Extra files for plotting benchmark data
• Parser.py, reference.log and tests.info

• Parse the test results (parser.py)
• Extract data from the log, using a regular

expression, and format it into a python map
• Specify threshold for pass/fail (reference.log)

• Put an expression in reference.log file
• Indicate the variable(s) to plot (tests.info)

• Global file tests.info has lines for all tests’
plottable variable

ConfidentialPA110/23/201452

Plot example

ConfidentialPA110/23/201453

Outline

Introduction
Architecture
Customization
Vision

53

ConfidentialPA110/23/201454

Vision

• (See next presentation)

ConfidentialPA110/23/201455

Resources

• Wiki: http://bird.org/fuego/FrontPage
• http://bird.org/fuego/Fuego_Quickstart_Guide
• Mail list:

• https://lists.linuxfoundation.org/mailman/listinfo/fuego
• Mail to: fuego@lists.linuxfoundation.org

ConfidentialPA110/23/201456

Fuego

Fuego
Status and Future

Directions
Tim Bird

Architecture Group Chair
LF CE Workgroup

56

ConfidentialPA110/23/201457

Outline

• Vision
• Recent activity
• Future directions

ConfidentialPA110/23/201458 ConfidentialPA110/23/201458

Vision

ConfidentialPA110/23/201459

Vision

Do for testing
what open source has done

for coding

ConfidentialPA110/23/201460

Testing problem

• Much of testing is ad-hoc
• Custom in-house work
• LOTS of manual steps• There are open source test programs
• Can collaborate on these as coding projects

• LTP, bonnie, cyclictest, netperf, …
• Test frameworks have parts of the puzzle:

• Jenkins, LAVA, KernelCI• Key pieces are left to the user:
• What tests to run
• How to run the test programs

• How to customize tests for different scenarios
• How to automate tests

• How to interpret the results

ConfidentialPA110/23/201461

Solution

• Reduce duplication of effort in testing
• Allow developers and testers to share effort

that each company is doing by itself
• Strategy:

• Identify manual steps
• Capture them
• Create ways to share “test collateral”

• Test framework has to gain popularity to
create “community effect”

• Focus on real tests and test results

ConfidentialPA110/23/201462

Required features

• Allow quick and easy setup
• Support a wide variety of configurations and

build systems
• Yocto Project/OE, Buildroot, etc.

• Support a wide variety of targets
• Support a wide variety of connection types:

• serial, ssh, adb, ttc
• Make it easy to create and publish new tests

ConfidentialPA110/23/201463

Vision of sharing

• Need to share test experience and collateral
• Not just test programs

• Test results based on boards, distros, hardware
• Parsing methods
• Test parameters

• “Test app store”
• Thousands of tests to choose from

• Results from tens of thousands of test nodes
• Crowdsourced results (e.g. Wikipedia)

ConfidentialPA110/23/201464

Increased automation

• Need heterogeneous, multi-node testing
• Test environment is more than just the Linux

distribution on the machine, with local hardware
• Lots of tests need other endpoints or external

hardware to communicate with
• USB, i2c, Ethernet, wifi, canbus, video/audio inputs

and outputs
• These are the hardest tests to automate

• Require specialized hardware or configuration
• E.g. USB switcher, CANbus packet injector

• Make it possible to share these rare setups

ConfidentialPA110/23/201465

Increased hardware coverage

• Big problem in Linux kernel community is
testing on different hardware, to ensure
things don’t break as patches are accepted
upstream

• Most successful board-level project is
KernelCI
• 10 labs, 160 boards, 2 million boots

• Want to do same thing, but with individual
boards
• Not necessarily kernel testing

ConfidentialPA110/23/201466

• Ten thousand test nodes
• Ability to run tests at request of community

• Ability to customize a test to find individual bugs
• Example workflow:

• User reports a bug on hardware xyz
• Developer runs test on node 2374 to reproduce

• Requires granting access to 3rd parties
• Requires trust network

• Use same mechanisms as kernel:
• Traceable affidavit
• Signing
• Validation

Sharing hardware

ConfidentialPA110/23/201467 ConfidentialPA110/23/201467

Recent Activity

ConfidentialPA110/23/201468

Recent Activity

• Survey of test tools
• Collection of test stories
• Recent Fuego work
• Branding
• Infrastructure

ConfidentialPA110/23/201469

Other test tools

• LAVA
• KernelCI
• KSelftest

ConfidentialPA110/23/201470

LAVA

• Linaro’s test framework
• Is a very powerful test scheduler

• Understands how to interact with many boards
and bootloaders

• Has a very scalable, secure architecture
• Does not include tests themselves
• Is pretty darn complex
• Is in midst of version change (to 2.0)
• Used by AGL-JTA (Fuego precursor for

Linux Foundation automotive group) for
board management

ConfidentialPA110/23/201471

KernelCI

• Project by Linaro specifically designed to
find kernel boot regressions
• 10 labs, 160 boards, 2 million boots
• Testing many upstream source trees

• Centralized management of test system
• Have good support for board farms (via

LAVA)
• Have results aggregation and comparison
• Has track record of actual fixes based on

bugs found (~165)
• Focus only on boot testing for now

ConfidentialPA110/23/201472

KSelftest

• Kernel unit test framework
• Has tests for individual kernel sub-systems
• Has no automation

• No output consistency
• Requires a human to interpret output of each test

• No notion of multi-node testing that I’m aware of
• Is relatively new

• Kernel version 4.1 can install test on target

ConfidentialPA110/23/201473

Test tools conclusion

• Test frameworks focus on different parts of
the overall test picture
• None focused on abstracting test invocation and

analysis
• Should figure out how to collaborate on

common pieces
• Make standards so that all tools, labs, tests,

benefit from improvements

ConfidentialPA110/23/201474

Test Stories

• Collected test stories at Linaro Connect and
ELC Europe

• May collect more at future events
• Haven’t posted on wiki yet…

ConfidentialPA110/23/201475

Results of “test stories”
survey

• Everyone wants to test something different
• Lots of manual activities
• Hard to convert from manual to automated

• Every board and configuration has quirks
• Need to control external entities during test

• Heterogenous multi-node
• eg canbus, wifi, Ethernet, video input, i2c devices, etc.

• No sharing of test collateral
• How to share “test expertise”?

ConfidentialPA110/23/201476

Recent Fuego work

• test_pre_check
• “ftc” tool
• Documentation
• Proxy support

ConfidentialPA110/23/201477

test_pre_check()

• New optional base script function to support
pre-testing the target and environment

• Added is_on_target() helper routine
• To detect binaries on the target
• Avoid building test program if it’s already in the

distribution
• Plan to move ASSERT_DEFINES into

test_pre_check() function
• Abort the test early if target or environment is

missing key feature
• Maybe give a different error

• E.g. ‘configuration problem’ or ‘unmet dependencies’

ConfidentialPA110/23/201478

‘ftc’ tool

• Ability to add, update test variables in board
file

• Test can store persistent information about a
board

• Purpose is to support target probing and
saving of found information

• Ability to launch a test from command line
• Ability to query targets and tests

ConfidentialPA110/23/201479

Documentation

• Test APIs
• Have templates for test API documentation
• Have about 50% of functions documented

• More docs about fuego details:
• phases, logs, environment variables, etc.

ConfidentialPA110/23/201480

Proxy support

• Allow for installation inside a corporate
firewall

• Patches submitted by Daniel Sangorrini
• Still processing them (sorry Daniel)

ConfidentialPA110/23/201481

Branding

• Name change from JTA in March
• Official logo:

• Red, bold, Arial, slightly rotated:

• Vertical flames:

• Official candy:
• Hot Tamales

• Spicy cinnamon

ConfidentialPA110/23/201482

What is “Fuego”?

• Fuego = Tierra del Fuego - one of the places
on earth where penguins live

• Fuego = Fire – often associated with trials
and purifying

• Fuego – it sounds neat

ConfidentialPA110/23/201483

Fuego

It’s hot!

ConfidentialPA110/23/201484

Infrastructure

• Web site (wiki)
• http://bird.org/fuego/FrontPage

• Mail list:
• https://lists.linuxfoundation.org/mailman/listinfo/fuego
• Mail to: fuego@lists.linuxfoundation.org

• Virtual private server
• Purpose is for online demos, and for people to try

out the interface, without installing the tool
• Not populated yet

• Working on qemu issues on VPS

ConfidentialPA110/23/201485 ConfidentialPA110/23/201485

Future Directions

ConfidentialPA110/23/201486

Future directions

• Easier installation and setup maintenance
• Target dictionary
• Test packages
• Test interface standards
• Other stuff
• What Fuego is not…

ConfidentialPA110/23/201487

Easier installation

• Tools to assist installation
• Provide “myboard” and set a few params (and

maybe rename it) with the command line tool
• No editing of files!

• Provide a container on docker hub to
eliminate install phase completely, for most
users

• Health check test

ConfidentialPA110/23/201488

“Target dictionary”

• Defined place for per-board test parameters
and collateral

• Re-organization of test specs and test plans
• Ties in to sharing test collateral

• E.g. if someone has stuff working on a beagle-
board, they should share their results

• ‘ftc’ tool is precursor to this

ConfidentialPA110/23/201489

Test packages

• Make tests separate from the framework
• Define what needs to be shared

• Collect materials that are scattered all over in
the repository: test script, source, jenkins config,
test specs, test plans, log parser

• Test plugin architecture
• Tool to manage packages:

• Ability to install individual test
• Create a package from existing materials
• Publish a test package

• Import via package or git repository

ConfidentialPA110/23/201490

Test interfaces standards

• Allow multiple front-ends and back-ends
• Board control interface
• Hardware and firmware recommendations

• Eg “expose a serial console”, “support tftp boot”
• Compliance tests and ratings

ConfidentialPA110/23/201491

Other stuff

• Self-tests for the test framework
• Matrix of tests vs. board results
• More tests

• Refine the board bringup tests from Renesas
• kselftest
• Kernelci – kernel boot test

• Waiting for serial console support
• Move official docs to ascii-doc (or some

other markdown)

ConfidentialPA110/23/201492

Other stuff (cont.)

• De-clutter the Jenkins
front end

• Improve documentation (more)
• Handle USB connections

• For ADB-based targets
• For Sony debug board

• Support for boards with only a serial console
• Have contractor for this work (Lineo Solutions)

ConfidentialPA110/23/201493

What Fuego is NOT

• Board farm tool
• Can support multiple nodes, but that’s not the

focus
• Handling the scalability of board farms is difficult

and requires extra hardware
• Focus on a single developer testing a single

board
• To scale out, make more host nodes

• Test results aggregator (yet)
• This will come in time. Focus for now is on

scaling out the actual tests

ConfidentialPA110/23/201494

Stuff deferred

• Send data to centralized repository
• Make it possible to join a decentralized test

network
• Help solve the “developer can’t test on different

harware” problem

ConfidentialPA110/23/201495 ConfidentialPA110/23/201495

Thanks

	Fuego
	Two presentations in one
	Fuego
	Outline
	Introduction
	Introduction
	Introduction
	Introduction
	Jenkins
	Jenkins
	A closer look
	Abstraction scripts
	Pre-packaged tests
	Test building
	Inside a container
	Outline
	Architecture
	Architecture Diagram
	How deployed
	Getting it and using it
	Main dashboard
	Architecture details
	Test definition
	Test Phases
	Fuego test phases
	Test execution flow
	Shell script example
	Overlay generation
	Overlay processing
	Test parameter abstraction
	Running a test (manually)
	Fuego tests page
	Individual test page
	Outline
	Customization
	Add a board
	The board file
	Board file sample (qemu-arm)
	Add the target in Jenkins
	Interface for adding a board
	Adding a toolchain
	Get SDK into the container
	Tell Fuego about SDK
	Adding a test - overview
	Functional tests
	Benchmark tests
	Test program
	Test script
	Fuego functions
	Shell script example
	Benchmark extras
	Plot example
	Outline
	Vision
	Resources
	Fuego
	Outline
	Vision
	Vision
	Testing problem
	Solution
	Required features
	Vision of sharing
	Increased automation
	Increased hardware coverage
	Sharing hardware
	Recent Activity
	Recent Activity
	Other test tools
	LAVA
	KernelCI
	KSelftest
	Test tools conclusion
	Test Stories
	Results of “test stories” survey
	Recent Fuego work
	test_pre_check()
	‘ftc’ tool
	Documentation
	Proxy support
	Branding
	What is “Fuego”?
	Slide Number 83
	Infrastructure
	Future Directions
	Future directions
	Easier installation
	“Target dictionary”
	Test packages
	Test interfaces standards
	Other stuff
	Other stuff (cont.)
	What Fuego is NOT
	Stuff deferred
	Thanks

