
Presented by

Date

Event

The end of time
(32bit edition)Arnd Bergmann

March 25, 2015

Embedded Linux Conference

Date and Time settings on an
Android phone (Nexus 4) today.

No year beyond 2037?

Overview: The end of time

● Understanding the problem
● Finding a solution
● Fixing driver internals
● Fixing system calls
● Fixing user space
● Fixing ioctl
● Fixing file systems

Understanding the problem

2038 issue

● Unix/POSIX’s Y2K
● time_t representing number of

seconds since Jan 1 1970.
● 32bit systems can represent dates from:

○ Dec 13 1901
○ Jan 19th 2038

● Less than 23 years to go

What does this mean for Linux?

● On Jan 19th 2038, time_t values overflow and
go negative.

● Negative times for timers are considered invalid,
so timers set beyond Jan 19 2038 fail

● Internal kernel timers set beyond Jan 19 2038
will never fire

● Until recently the kernel would hang as soon as
time_t rolls negative

But we have 23 years!
That’s tons of time!

Folks will just upgrade to 64bits by then!

Problem with that...

Lots and lots of 32bit ARM devices being
deployed today that may have 23+ year life
spans

1992 Honda Civic

1992 wasn’t so long ago

● So maybe not a “classic” car, but
these are still on the road.

● People expect their radio to still work
● Especially if they paid for the fancy

in-dash infotainment system.

1992 Lamborghini Diablo

* Assuming you can still get battery replacements then….

Other long deployment life systems

● Security systems
● Utility monitoring sensors
● Satellites
● Medical devices
● Industrial fabrication machines

As embedded processors gain power, these are more likely
to be running general-purpose kernels like Linux

Finding a solution

Crux of the issue

● Moving to 64 bit hardware isn’t a realistic
answer for everyone
○ Even with 64 bit hardware, some users rely on 32 bit

user space
● However, today’s 32 bit applications are

terminally broken

OpenBSD precedent

● Converted time_t to long long in 2013:
http://www.openbsd.org/papers/eurobsdcon_2013_time_t/

● Broke ABI, but “distro” is self-contained so
limited compatibility damage
○ Lots of interesting thoughts there on the risks of

compatibility support delaying conversion

http://www.openbsd.org/papers/eurobsdcon_2013_time_t/
http://www.openbsd.org/papers/eurobsdcon_2013_time_t/

NetBSD precedent

● Added a new system call API in 2008
● Kept ABI compatibility for existing binaries
● No option to build against old ABI
● Some user space (e.g. postgresql) broke

after recompiling

Our strategy for Linux

● Build time:
○ support both 32-bit and 64-bit time_t
○ Leave decision up to libc

● Run time:
○ Like NetBSD, add a new 64-bit time_t ABI
○ Support both system call ABIs by default
○ Allow 32-bit time_t interface to be disabled

Kernel implications

● Have to change one bug at a time
● Hundreds of drivers
● 30-40 system calls
● Dozens of ioctl commands
● Incompatible changes for on-wire and

on-disk data

Just to be clear

● This won’t solve *all* 2038 issues
● Just want to focus on solving the kernel issues and

give a path for applications to migrate to.
● Applications likely do dumb things (which seemed

reasonable at the time) w/ time_t
● If you’re ~40 years old, fixing this won’t hurt your

supplemental retirement planning
○ There will still be lucrative contracts to validate and fix

applications.

Current status

● Core timekeeping code already fixed
● OPW internship ongoing, lots of simple driver

fixes, but more broken code gets added
● Linaro and others spending developer time
● Known broken files down from 783 to 725

since v3.15, lots more work to do
git grep -wl '\(time_t\|struct timespec\|struct timeval\)'

Fixing drivers internals

Fixing drivers, typical code
struct timeval start_time, stop_time;
do_gettimeofday(&start_time);
...

do_gettimeofday(&stop_time);
t = stop_time.tv_sec - start_time.tv_sec;
t *= 1000000;
if (stop_time.tv_usec < start_time.tv_usec)

t -= start_time.tv_usec - stop_time.tv_usec;
else

t += stop_time.tv_usec - start_time.tv_usec;

Example from
sound/pci/es1968.c

Fixing drivers, typical code
struct timeval start_time, stop_time;
do_gettimeofday(&start_time);
...

do_gettimeofday(&stop_time);
t = stop_time.tv_sec - start_time.tv_sec;
t *= 1000000;
if (stop_time.tv_usec < start_time.tv_usec)

t -= start_time.tv_usec - stop_time.tv_usec;
else

t += stop_time.tv_usec - start_time.tv_usec;

Trying to remove
these

Fixing drivers, trivial fix
struct timespec64 start_time, stop_time;
do_getnstimeofday64(&start_time);
...

do_getnstimeofday64(&stop_time);
t = stop_time.tv_sec - start_time.tv_sec;
t *= 1000000000;
if (stop_time.tv_nsec < start_time.tv_nsec)

t -= start_time.tv_nsec - stop_time.tv_nsec;
else

t += stop_time.tv_nsec - start_time.tv_nsec;
t /= 1000;

direct replacement type,
using nanosecond
resolution.

Code was actually
safe already but not
obviously so.

Fixing drivers, trivial fix
struct timespec64 start_time, stop_time;
do_getnstimeofday64(&start_time);
...

do_getnstimeofday64(&stop_time);
t = stop_time.tv_sec - start_time.tv_sec;
t *= 1000000000;
if (stop_time.tv_nsec < start_time.tv_nsec)

t -= start_time.tv_nsec - stop_time.tv_nsec;
else

t += stop_time.tv_nsec - start_time.tv_nsec;
t /= 1000;

direct replacement type,
using nanosecond
resolution.

Code was actually
safe already but not
obviously so.

Possible overflow?

Fixing drivers, better fix
ktime_t start_time;
start_time = ktime_get();
...

t = ktime_us_delta(ktime_get(), start_time);

Using monotonic time
also fixes concurrent
settimeofday() calls

Efficient, safe and easy to use
helper functions improve
drivers further

Fixing system calls

System calls, example time()
SYSCALL_DEFINE1(time, time_t __user *, tloc)

{

 time_t i = get_seconds();

 if (put_user(i, tloc))

 return -EFAULT;

 return i;

}

#define __NR_time 13

System calls, example time()
SYSCALL_DEFINE1(time, time_t __user *, tloc)

{

 time_t i = get_seconds();

 if (put_user(i, tloc))

 return -EFAULT;

 return i;

}

#define __NR_time 13

Need to fix
for 32-bit

System calls, example time()
SYSCALL_DEFINE1(time, __kernel_time64_t __user *, tloc)

{

 __kernel_time64_t i = get_seconds64();

 if (put_user(i, tloc))

 return -EFAULT;

 return i;

}

#define __NR_time 13

#define __NR_time64 367

Better, but
now breaks
compatibility

System calls, example time()
#ifdef CONFIG_COMPAT_TIME

COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)

{

 compat_time_t i = (compat_time_t)get_seconds64();

 if (put_user(i, tloc))

 return -EFAULT;

 return i;

}

#endif

System calls, traditional types
typedef long __kernel_time_t; /* user visible */

typedef __kernel_time_t time_t; /* kernel internal */

System calls, intermediate types
typedef long __kernel_time_t; /* user visible */

typedef __kernel_time_t time_t; /* kernel internal */

#ifdef CONFIG_COMPAT_TIME

typedef s64 __kernel_time64_t; /* user visible */

typedef s32 compat_time_t; /* kernel internal */

#else

typedef long __kernel_time64_t; /* internal HACK! */

#endif

System calls, final types
typedef long __kernel_time_t; /* user visible */

typedef __kernel_time_t time_t; /* kernel internal */

typedef s64 __kernel_time64_t; /* user visible */

#ifdef CONFIG_COMPAT_TIME

typedef s32 compat_time_t; /* kernel internal */

#endif

Fixing user space

Embedded distros

● Change libc to use 64-bit time_t
● Recompile everything
● ...
● Profit

Embedded distros

● Change libc to use 64-bit time_t
● Recompile everything
● ...
● Profit

● Caveat: ioctl

Embedded distros

● Change libc to use 64-bit time_t
● Recompile everything
● ...
● Profit

● Caveat: ioctl
● Caveat 2: programs hardcoding 32-bit types

Standard distros

● Need to provide backwards compatibility
● glibc to use symbol versioning
● multi-year effort

Standard distros

● Need to provide backwards compatibility
● glibc to use symbol versioning
● multi-year effort

● Any 32-bit standard distros remaining in
2038? Maybe Debian

Fixing ioctl

Fixing ioctl commands in drivers

● Full audit of data structures needed
● Some user space needs source changes
● Recompiled user space tools may break on

old kernels
● Some headers need #ifdef

to know user time_t size

Fixing file systems

y2038 and filesystems

Unmount
followed by
mount.
Think of it as
a reboot.

Oops!

Choosing
xfs as an
example.

y2038 and filesystems

Oops!

This is a 64-bit system

On-disk representation
● Up to the filesystem
● Example: Adding epochs in xfs.

Reinterpret seconds field
● 8-bit padding → 255*136 years

Fixing filesystem timestamps

inode_operations
● change in-inode fields
● inode_time or timespec64?
● Rewriting getattr / setattr callbacks

Fixing filesystem timestamps

ioctl interface
● Also controlled by filesystem
● Rewrite ioctls to reinterpret time with epochs.
● update xfsprogs to understand new format

Fixing filesystem timestamps

The end of time

The End
Special thanks:
John Stultz
Tina Ruchandani

Questions?

Backup slides

Discussed solutions

● Unsigned time_t
● New 64bit time_t ABI
● New kernel syscalls that provide 64bit time

values

Unsigned time_t

● Have the kernel interpret time_t’s as unsigned values
● Would allow timers to function past 2038

○ Might work for applications that only deal with relative timers.
● Still problematic

○ Could modify glibc to properly convert time_t to “modern” string
○ Applications lose ability to describe pre-1970 events

● Could subtly change userspace headers?
○ Probably not a good idea

● Define time_t as a long long
● Provide personality compat support for

existing 32bit ABI
● Applications recompiled w/ new ABI would

work past 2038, old ABI applications would
work until 2038.

New Kernel ABI

New Kernel ABI Drawbacks

● Still issues with application bad behavior
○ Internally casting time_t to longs
○ Storing time_t in 32bit file/protocol formats

● Have to implement new compat functions
○ Not a trivial amount of work

● New ABI is a big break, might want to “fix”
more than just time_t
○ Might get lots of “riders” on the change

Add new gettime64() interfaces

● New time64_t type
● Also need interfaces for setting the time,

setting timers, querying timers, sleep
interfaces, etc.

● 30-40 syscalls take time_t
○ ioctls are even worse

● Lots of structures embed time_t

