
Developing Open-Source
Software RTOS with
Functional Safety in Mind ?
Anas Nashif, Intel Open-Source Technology Center

Disclaimer:

I am not a safety expert.

Credit: https://unsplash.com/@rawpixel

• Short answer is yes, using open-source software is very common, in all areas

• But…

• Open-source software usually require major transformation before it can be used

• Mostly such transformation happens behind closed doors (if license allows that)

• Complete disconnect between original source and “certified” code

• Transformation of open-source code to be functionally safe is “expensive”

• Following standards very early in a project life-cycle is key

• There are many standards…

Can open-source software be used for Functional
Safety?

Safety Standards

“The nice thing about standards is that there are so many of them to choose from.” [Tanenbaum]

• Open source implementation

• Small trusted code base (in terms of LoC)

• Safety oriented architecture

• Built in security model

• POSIX compliant C library

• Supports deterministic thread scheduling

• Supports multi-core thread scheduling

• Proof that ISO compliant development was done

• Accountability for the implementation

• Industry Adoption

• Certification friendly interfaces

Is this possible? Example: RTOS

Cathedral and the Bazaar

• Open-source Software is not a problem
in itself

• It is difficult to map a stereotypical
open-source development to the V-
model

• Specification of features

• Comprehensive documentation

• Traceability from requirements to source
code

• Number of committers and information
known about them

• Certification authority not familiar with
open-source development

V-Model: Software Development

9

• Quality is a mandatory expectation
for software across the industry.

• Software Quality is not an additional
requirement caused by functional
safety standards.

• Functional safety considers Quality
as an existing pre-condition.

• Quality Managed (QM) status should
be the aspiration of any open-
source project, regardless of FuSA
goals

Quality Matters

...

...

Functional
safety Process

functional Safety
Standards e.g.

ISO26262, IEC 61508

Basic Quality Management
System

Quality as a
foundation

Requirement Traceability

• Reference links between
requirements

• Verification links from related tests

• Satisfaction links from decomposed
requirements

• Implementation links from user
stories

Traceability Tools

Cost-Effective Unit Testing and Integration in Accordance with ISO 26262, Mark Pitchford

• It is a software development standard that aims to facilitate programming safety-critical software in embedded systems

• Focus in safety, security, portability and reliability.

• Latest version is MISRA-C:2012

• Launched in 2013 and it’s based on ISO/IEC 9899:1999.

• Contains 167 guidelines in the standard plus 14 new guidelines in Amendment 1

• Every MISRA C guideline is classified as either being a “rule” or a “directive”.

• A directive is a guideline that is not possible to provide the full description necessary to perform a check for compliance.

• A rule is a guideline for which a complete description of the requirement has been provided, it is possible to check
compliance without needing any other information.

• A guideline can be “mandatory”, “required” or “advisory”

• Mandatory - All code shall comply with every mandatory guideline. Deviation is not permitted.

• Required - All code shall comply with every required guideline. Deviation is allowed.

• Advisory - It is a recommendation. Formal deviation is not necessary.

MISRA-C as a Guideline

• Some Rules are very controversial, how to deal with those?

• Decide which guidelines you want to deviate

• Incorporate it to contribution guidelines

• MISRA-C is proprietary, how to make it available for everybody

• Find the right “opensource” tools and integrate with CI

• Most tools are commercial, not easy to integrate on Github with PRs

• Collaboration from other developers

• Either, reviewing and fixing

• Apply it to the full scope of a project.

MISRA-C and Opensource Challenges

Rule 15.5 - A function should have a single point of exit at the end

• Most readable structure

• Less likelihood of erroneously omitting function exit code

• Required by many safety standards.

• IEC 61508

• ISO 26262

Example: MISRA-C Rule 15.5

• Feature richness and completeness is not enough

• Adoption barrier unless there is a clearly identified entity that is responsible for the
software and safety sign-off

• Main reason why adoption of open source software is limited for higher safety integrity
levels

• “Who is liable if something goes wrong?”

• Even with a certified offering, open or proprietary* and with a clearly accountable
entity behind it, it is difficult to have early adopters (Nobody wants to be first).

Users demand Accountability

How to approach certification in open-source

• Snapshotting a Source Tree (branch),
validating it then controlling updates is a
viable approach to software qualification

• Build a cathedral on top of (or beside) the
bazaar

• Getting supported feature set right is most
important up front decision

• The more you support, the more documentation
and testing you are going to provide

• Automate as much of the information
tracking as you can

• Auto-generate documents from test and
issue tracking systems

• Get proof of concept approval from a
certification authority as early as possible

• Has a split development model:

• Flexible open instance: developed as usual in the open with community participation

• Auditable and controlled instance: Branch with well defined scope developed with
stricter rules and with an entity behind it.

• Auditable instance aligns with the open instance at a cadence dictated by necessity and
certification cost.

• The entity running the auditable code base has experience with assessment and certification
and sas ideally already been down this route before and has ideally gotten the blessing of
users by way of product deployments

• An open source community helps enrich the open instance at a suitable pace by open
collaboration. Everyone benefits from this instance.

• The owning entity maintains the auditable instance and takes on the certification
qualification overheads. Users who want assurances engage with the owning entity (they get
to point the finger).

The Ideal Project

• Code is available publicly and can be scrutinized by anyone.

• Code Reviews and direct user feedback help improve quality

However…

• Do we have the right set of reviewers?

• Who gets to have the final say?

• How do we guarantee that the reviewer is aware of Safety implications?

• For how long should changes be reviewed?

Example: Regulating the Bazaar

Zephyr: Pull Request Processing Times

Optimal

Contributions vs Reviews

Problem?

Reviewers, Reviewers, Reviewers, Reviewers, …

• FreeRTOS-compatible alternatives from Wittenstein

• SafeRTOS was rebuilt from the same code base for compatibility.

• SafeRTOS has been rewritten and meets the requirements of the IEC 61508 safety
standard.

SafeRTOS did something similar, not quite!

Not the ideal model for open-source

Where are we with Zephyr?

… but we have the ingredients to get there fast.

Zephyr: a modular RTOS

Challenge
Many companies and business groups
paying for different real time OS
solutions, for small connected devices
and embedded controllers.
This lead to costly, time consuming
and divergent solutions for Intel and
our customers

Solution, Zephyr
§ A small, modular, open source, real-time operating

system (RTOS) for use on connected resource-
constrained and embedded controllers

§ Supports diverse use cases and architectures

§ Focused on safety, security, connections with
Bluetooth support, and a full native networking
stack

§ Apache 2.0 license, hosted at Linux Foundation

Ecosystem Support Stack Zephyr OS

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

Middleware/Networking

Project Members

Platinum
Members

Silver
Members

Zephyr – A fully featured RTOS

Safety

•Thread Isolation
•Stack Protection
(HW/SW)

•Quality Managed (QM)
•Build time
configuration

•No dynamic memory
allocation

•FuSA (2019)

Security

•User-space support
•Crypto Support
•Software Updates

Configurable &
Modular
•Zephyr Kernel can be
configured to run in as
little as 8k RAM

•Enables application
code to scale

•Configurable and
Modular

Cross Platform

•Support for multiple
architectures

•Native Port
•Developed on Linux,
Windows and MacOS

Open Source

•Licensed under Apache
II License

•Managed by the Linux
Foundation*

•Transparent
development

•Fork it on Github!

Connected

•Full Bluetooth 5.0
Support

•Bluetooth Controller
•BLE Mesh
•Thread Support
•Full featured native
networking stack

•DFU (IP+BLE)

Zephyr is a small, modular, open-source real-time operating system (RTOS) for use on resource-constrained systems
covering diverse use cases and supporting multiple architectures.

Zephyr is not an ingredient, Zephyr provides a complete solution.

Architecture and Key Features

Platform

Radios

Power Management

Kernel Services / Schedulers

Sensors Crypto HW

I2
C

SP
I

U
A

RT

G
PI

O

…

Fi
le

 S
ys

te
m

Lo
gg

in
g/

D

eb
ug

D
at

ab
as

e/

Pr
op

er
tie

s

C
ry

pt
o

IP
C

Flash

Se
ns

or
s

...

Low Level API

D
ev

ic
e

M
an

ag
em

en
t

15.4

IPv6/IPv4

TCP/UDP

BLE Wi-Fi* NFC* ...

6LoWPAN

RPL

Th
re

ad

TLSDTLS

CoAPHTTPMQTTLWM2M…

Application

Smart Objects / High Level APIs / Data Models

ke
rn

el
O

S
Se

rv
ic

es
A

pp
lic

at
io

n
Se

rv
ic

es

q Highly Configurable, Highly Modular

q Cooperative and Pre-emptive Threading

q Memory and Resources are typically statically allocated

q Integrated device driver interface

q Memory Protection: Stack overflow protection, Kernel object and
device driver permission tracking, Thread isolation

q Bluetooth® Low Energy (BLE 4.2, 5.0) with both controller and
host, BLE Mesh

q Native, Fully featured and optimized networking stack

q Industrial Protocols

Fully featured OS allows developers to focus on the application

Why Zephyr?
A

dd
re

ss
 F

ra
gm

en
ta

tio
n • No single RTOS addresses broad set of

embedded use cases across a broad set of
platforms and architectures

• Disjoint use cases have led to fragmentation
in RTOS space

• Existing commercial solutions force roll
your own solutions and duplication of
software components

M
od

ul
ar

 In
fr

as
tr

uc
tu

re • Modular and configurable infrastructure
allows creation of highly compact and
optimal solutions for different products
from a common origin

• Reuse allows NRE costs to be amortized
across multiple products and solutions

• Multi-architecture support reduces
platform switching costs and vendor lock-in
concerns

O
pe

n-
So

ur
ce • Roll your own is expensive & difficult to

develop & maintain

• Permissively licensed corresponds to ease
of adoption

• Corporate sponsorship assures long term
commitment and longevity

• Community innovation has proven faster for
progression and project development is a
collaboration of industry experts

Fe
at

ur
e

Ri
ch

ne
ss • Need for a solution or semi-complete

solution rather than just an ingredient.

• Lowers entry level barrier for new products
and speeds up software delivery using
existing feature and hardware support

• Encourages adherence to standards and
promotes collaboration on complex
features inside the organization

• Developers focus on the end-user facing
interfaces instead of re-inventing low level
interfaces

The Zephyr OS addresses broad set of embedded use cases across a broad set of platforms and architectures using a
modular and configurable infrastructure.

Reduce costs and improve efficiency through reuse

Zephyr Roadmap 2018/2019

q Safety and Security

q FuSa Capable: Secure and harden the Kernel to
meet IEC61508 SIL 3 (2019+)

q Thread Isolation, User-space, Stack Protection

q Development model and process with security
and safety in mind

q Secure and harden the Kernel (1.14)

q MISRA-C 2012 Compliance (1.14)

q Trusted Execution Environments (1.14)

q Expand use cases and application areas

q Industrial, safety and security features (1.14)

q Deep Embedded usages

q Advanced Configurations and use cases:
Multicore, SMP, AMP, .. (1.12)

q Introduce and support Zephyr as an E2E platform:

q Bootloader (1.11)

q Device Firmware Updates (1.11)

q Cloud Connectivity

q Development Tools

q Eco System, Portability

q Improve support on Mac* and Windows* (1.11)

q IDE integration (1.14)

q 3rd Party Tools: Tracing, Profiling, Debugging… (1.13)

q LLVM, Commercial compilers, .. (1.14)

q Standard APIs and Portability: POSIX Layer (PSE54),
BSD Socket (1.12), CMSIS RTOS v1 (1.13)

31

Roadmap to FuSA & Security Pre-Cert.
Zephyr OS

Kernel

OS Services

Application Services

HAL

3rd Party Libraries

Middleware

POSIX

Robustness

sc
op

e

C
om

pl
ia

nc
e

Testing (Full Coverage)

•Limit to officially supported and maintained code
•Start of the lowest layers and go up the stack

1. Limit the Scope

•MMU and MPU support
•Thread Isolation
•Stack Protection

2. Robustness and operational safety

3. Enhance and Increase Test Coverage

•MISRA-C Compliance (MISRA-C:2012)

4. Compliance with coding and style guidelines,
development process

5. Well defined and Stable APIs

•Support POSIX APIs (PSE52, long term PSE54)

6. Portability

Candidate Standards

• MISRA C:2012, with Amendment 1, following MISRA C Compliance:2016 guidance

Coding for Safety, Security, Portability and Reliability in Embedded Systems:

• IEC61508: 2010 (SIL 3, but possibly SIL 4)
• broadest for robotics and autonomous vehicle engineering companies. Reference for other

standards in Robotics domain.
• Sampled Certifications derived from IEC61508: Medical: IEC 62304; Auto: ISO 26262; Railway:

EN 50128

Safety

• Common Criteria (EAL4 but possibly higher levels EAL5,6)

Security

• Medical: FDA 510(K), ISO 14971, IEC 60601; Industrial: UL 1998, ??

Others

https://www.misra.org.uk/Buyonline/tabid/58/Default.aspx
https://misra.org.uk/LinkClick.aspx?fileticket=V2wsZxtVGkE=&tabid=57
https://misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA=&tabid=57
https://en.wikipedia.org/wiki/IEC_61508
http://www.clearsy.com/en/2011/06/the-iec-standard-and-its-derivatives/
https://en.wikipedia.org/wiki/Common_Criteria

It is
q Product Focused

q Compatible with New Hardware: We will make point releases throughout the

development cycle to provide functional support for new hardware.

q More Tested: Shorten the development window and extend the Beta cycle to allow for

more testing and bug fixing

q Certifiable: The base for the auditable branch
It is not

q A Feature-Based Release: focus on hardening functionality of existing features, versus

introducing new ones.

q Cutting Edge

Zephyr Long Term Support (LTS)

• An auditable code base will be established from a
subset of Zephyr OS features.

• Both code bases will be kept in sync from that point
forward, but more rigorous processes (necessary for
certification) will be applied before new features move
into the auditable code base.

• Initial and subsequent certification targets to be
decided by Zephyr project governing board.

• Processes to achieve selected certification to be
determined by Security Working Group and
coordinated with the TSC.

Auditable Code Base

Development

Long Term
Support “Stable”

Auditable

Releases

Product ready

Product ready
(Pre-certified)

Audit Ready
Documentation

Safety & Security Process

Community and Member
Contributions

Scope for FuSA (in orange)

Platform

Radios

Kernel Services / Schedulers

Sensors Crypto HW

I2
C

SP
I

U
A

RT

G
PI

O

…

Fi
le

 S
ys

te
m

Lo
gg

in
g/

 D
eb

ug

D
at

ab
as

e/

Pr
op

er
tie

s

C
ry

pt
o

IP
C

Flash

Se
ns

or
s

...

Low Level API (Kernel, Services)

D
ev

ic
e

M
an

ag
em

en
t

15.4

IPv6/IPv4

TCP/UDP

BLE Wi-Fi* NFC* ...

6LoWPAN

RPL

Th
re

ad

TLSDTLS

CoAPHTTPMQTTLWM2M…

Application

Smart Objects / High Level APIs / Data Models

ke
rn

el
O

S
Se

rv
ic

es
A

pp
lic

at
io

n
Se

rv
ic

es

POSIX PSE52 Portability Layers Zephyr Public API

Architecture Interface

Power Management Interrupt Handling Common arch interface

q Functional Safety and Security requirements need to coexist with the open-source
nature of the project

q Quality needs to be driven on the project level

q Need to showcase our quality process and test plans publicly

q Drive adoption through quality managed release process

q Manage Developer and Contributor Expectations

q Continue innovating on main tree while hardening and stabilizing Zephyr LTS, ,the
base for any auditable branches

q Need to officially establish accountability and trusted “entity”, i.e. with Certification
Architect role in the project

Summary

Get Started

Resource Pointer

Website http://www.zephyrproject.org/

Documentation http://docs.zephyrproject.org/

Git Repository (Code) https://github.com/zephyrproject-rtos/zephyr

Issues https://github.com/zephyrproject-
rtos/zephyr/issues

Mailing lists https://lists.zephyrproject.org/mailman/listinfo

Q/A

