Zephyr”

Developing Open-Source
Software RTOS with
Functional Safety in Mind ?

Anas Nashif, Intel Open-Source Technology Center

Disclaimer:

| am not a safety expert.

Credit: https://unsplash.com/@rawpixel

® o e e g -

ar ") L s 01 s

»

)

iS:zephyr(master): cd

i9:~: git clone git@github.com:zephyrproject-rtos/zephyr.git

Cloning into 'zephyr' . . .

remote: Enumerating objects: 10, done.

remote: Counting objects: 100% (1les10), done.

remote: Compressing objects: 100% (6/6), done.

remote: Totql 260365 (delta 5), reused 4 (delta 4), pack-reused 260355
Receiving objects: 100% (260365/260365), 148.41 MiB | 3.87 MiB/s, done.
Resolving deltas: 100% (189420/189420), done.

Checking out files: 10ex (11912/11912), done.

i9:~:

ephyr™Project

Can open-source software be used for Functional
Safety?

* Short answer is yes, using open-source software is very common, in all areas
 But...
 Open-source software usually require major transformation before it can be used
* Mostly such transformation happens behind closed doors (if license allows that)
« Complete disconnect between original source and “certified” code
 Transformation of open-source code to be functionally safe is “expensive”
* Following standards very early in a project life-cycle is key

 There are many standards...

Safety Standards

Safety Standards
IEC 61508 DO178B/C ECSS IEC 62304
Generic standard Aeronautics Space (ESA) Medical devices
LIL
IEC 61511 IEC 61513 IEC 62061 EH 50126/8/9 ISO 26262
Industrial processes Huclear Industry Machine Safety Railways Automotive

“The nice thing about standards is that there are so many of them to choose from.” [Tanenbaum]

Is this possible? Example: RTOS

* Open source implementation

 Small trusted code base (in terms of LoC)

« Safety oriented architecture

« Built in security model

« POSIX compliant C library

* Supports deterministic thread scheduling

* Supports multi-core thread scheduling

* Proof that ISO compliant development was done
« Accountability for the implementation

* Industry Adoption

» Certification friendly interfaces

Cathedral and the Bazaar

Open-source Software is not a problem
in itself

It is difficult to map a stereotypical
open-source development to the V-
model

» Specification of features
 Comprehensive documentation

* Traceability from requirements to source
code

e Number of committers and information
known about them

* Certification authority not familiar with
open-source development

Cathedral

Y
I

Bazaar

V-Model: Software Development

Operations,
Warranty,
Maintenance

Proposal, or
Business Case

System
Verification, 8. Site Accordance Test
kil kbl als 7 Acceptance, 9. User Acceptance Test
Certification 10. Certification

Customer or
Business — — System Validation Plan _
Requirements

< l
. Functional Design £
Requirements : S System
and SSeciﬁcation A . — — System VerificationPlan _ _ _ _ _ _ S Y Verification, 6. System Test
G
Development System) (System Acceptance) X Deployment 7. Factory Acceptance Test
Requirements {‘?
L
Preliminary & Subsystem or 3. Incoming Device Test
; . g R y! . g Device Tes
Design 4— ‘4\9-‘ - ;ugsgtgnxenﬁsag.on_ﬂgq_ - —> Component 4. Burn-in $ Environmental Test

(High-Level) /%a (Subsystem Acceptance)

¢ |

Critical Design — — — Unit/Device _ _ Unit/Device 1. Prototype Test
(Low-Level) Test PLan Testing 2. First Article Inspection

|

Verification 5. Integration Test

Test Documentation

S
§

! g

Preperation N

Software/Hardware

Implementation

O Gate/Review/Baseline

Time I

Quality Matters

Quality is a mandatory expectation
for software across the industry.

Software Quality is not an additional
requirement caused by functional
safety standards.

Functional safety considers Quality
as an existing pre-condition.

Quality Managed (QM) status should
be the aspiration of any open-
source project, regardless of FUSA
goals

Functional
safety Process

functional Safety

Standards e.g.
1SO26262, IEC 61508

Basic Quality Management
System

Quality as a
foundation

Requirement Traceability

V-model of Systems and SW Development

« Reference links between \ \ |
. stakeholder verifies - aoceptance
requirements ~ requirements \ / tests /
: , /
e e \ / ,
» Verification links from related tests | satsis \ /
\ . /
. . : \ system verlies system /
» Satisfaction links from decomposec . requirements " tosts /
requirements \ \ [/
\\ satisfies \ /
. . \ . /
* Implementation links from user \ module . '°11eS module
: .~ requirements tests /
stories \ \ /
\ \ / //
\\ satisfies \/ /

\\ verifics Uhlt D/
\\ Qrchltecture)14\ tests /. /

\ e — — /

\\ V”_——/

4 © Table 8 - Design principles for software unit design and implementation - Unfulfilled
© 1a - One entry and one exit point in and functions - L

© 1b - No dynamic objects or variables, or else online test during their creation - Unfulfilled
© 1c- Initialisation of variables - Unfulfilled

© 1d - No multiple use of variable names - Unfulfilled

© 1e - Avoid global variables or else justify their usage - Unfulfilled

© 1f - Limited use of pointers - Unfulfilled

Traceability Tools

Cost-Effective Unit Testing and Integration in Accordance with ISO 26262, Mark Pitchford

Requirement
based test
e ey case
Value | Name Type
I CALCULATE_CMD command S_U16
(e Elorer o *** Value Retained *** airspeed S_U32
> ¢ identifyProduct §
» ¢ removelastProduct o0 airspeed S.u32
¢ startSession
« Cashregister_barcode 31 void runAirspeedCommand (S_U16 command) void
4'{ Cashregister_cancel 32 B¢ unArspeedCommand
s 33 | switch(command) -
£ Global Variables 34 B { -
'3 Return Type - void 3s | case CALCULATE_CMD:
4 = Combined Coverage Run [T Vol LIS 36 calculateAirspeed (airspeed):;
== Statement Coverage - 100% Test Case Regression P / F Procedure Object = 37 break;
= Branch/Decision Coverage - 100% M s sovm—-pyes sl R iy @ Unexecuted code for
A mis PASS removeLastProduct sa | displayhirspeed (airspeed): H
4= CurentCoverageRn @1 e sty e | S & e () the given test case
= Statement Coverage - 100% m1 PASS Cashregister_barcode L 41) beeak;
= Branch/Decision Coverage - 100% mis PASS Cashregister_barcode r e |) =
. & 2 L SID)
m19 PASS -
© Cashregister_code m20 PASS
> ¢ Cashregister_end 7|2 PASS
© Cashregister_key an PASS = Call Depth / Parameter Name
lriable 10 view < il 5 Varisble Name Alias File Procedure Type Code Attribute Code Used on lines... Unexecuted data
N airspeed AirspeedCommands. runAirspeedCommand G R 39 eeees
Value Name Type Use Regression Analysis Regressiol PP 5 . J £ for th
1 ou scannedProducts LDRA _uint32_t Input global Assigned = On line 39 the reference to i. reference ror e
1 state_Active state (CashRegisterState Input global Assigned o Akeic e airspeed by displayAirspeed is - given test case
o scannedProducts LDRA_uint32_t Output global Compare + Write = not executed with this test case 33
state_ldle state tCashRegisterState Output global Compare + Write I= factor AirspeedCaleulate.cpp 16
[ax
o (0) Theee-Level Requrements to Procedwres O | 0
Pr—— " e — P
[5Y5.00100, Manage products HLR 00100, Add products | [R 010903, Castregister_cancet: remove product ~ < LDRA uint32.1 Specialotier_getPrice(const LORA_uint32.¢ 3Quan.
© 2 55,0020, ser Interace oxtput HLR 00200, Add products o y "
© 2 5V5.00300, Help HLR 00300, Empty when end N
| 5YS_00400, Final Ticket HLR 00400, Generate ticket when end v
2 510050, Managesesson HIR 0033 Cocel sesion v Caveister brcodeconst LORA o2, Koo}
® [55,0600, User Interlace Input HLR 00600, Scan process barcodes < rcancel(;
o HLR 00700, Sact with empty ¢ void Cashegister codeds
HLR 00800 Key inprocess barcoces < void Casvegiste end0;
N\K_WSW.(;M Shopping basket products © void Cashvegister_key(const LORA uint32_t akey):
! HLR 01000, Generate ticket swn;
53] HLR.01100, Display removed product o ¥
or HLR 01200, Manage user interface session © e_help(; |
4 HLR 01300, Incory ial offe . .2 aC!
T ——— HR 01 Wamendsenon N ORI
y b e5ch Countederoduc f the count +ve HLR_01500, Dishay help when requested N $how(LDRA_const char,
@ HLR 01600, Userinput | ¢ vo adaproducticonst st Procuct* sbroduct
° & HLR 01700, M VOid countProducts(;
® R oty * Requeement oty © void endSessiond:
. ! = [
tedprotec = roducdsabess (rer); o R o :
— ‘¢ - Gy St © void identifyProduct(const LORA_uint32.1 a8arcode);
I (= [o void e
0 s | ¢ vou removetastroductt:
Procedure Calls Statement(100%) Branch/Decision(100%)) |2 UR 050306, o | |¢ void surtsessiond:
 addProduct = 100 =100 e - nstrodst > et |8 4R 00307 pase commands
& identifyProduct = 76 = 33 ¢
W Cashregister.end == 100 =100 Yo
Cashregister_cancel == 100 = 100 ‘e %
: Metmeninnl — g A System Software high-level Software low-level Source code
A SCountedprodct -> AProfict -> pecuOler =2 HO_OFFER . . .
% startSession = 100 =100 ! requirements requirements requirements
“w Cashregister_key = 100 = 100 i
% countProducts == 100 - 86 -
3 i 0
@ generateTicket 62
SETEQTETETST3 00 00
‘W endSession = 100
W removelastProduct == 100 = 100

MISRA-C as a Guideline

It is a software development standard that aims to facilitate programming safety-critical software in embedded systems

* Focus in safety, security, portability and reliability.

Latest version is MISRA-C:2012
* Launched in 2013 and it's based on ISO/IEC 9899:1999.

Contains 167 guidelines in the standard plus 14 new guidelines in Amendment 1

Every MISRA C guideline is classified as either being a “rule” or a “directive”.
« Adirective is a guideline that is not possible to provide the full description necessary to perform a check for compliance.

* Aruleis aguideline for which a complete description of the requirement has been provided, it is possible to check
compliance without needing any other information.

LA A1

A guideline can be "mandatory”, “required” or “advisory”

* Mandatory - All code shall comply with every mandatory guideline. Deviation is not permitted.
* Required - All code shall comply with every required guideline. Deviation is allowed.

* Advisory - It is a recommendation. Formal deviation is not necessary.

MISRA-C and Opensource Challenges

Some Rules are very controversial, how to deal with those?

Decide which guidelines you want to deviate

Incorporate it to contribution guidelines

 MISRA-C is proprietary, how to make it available for everybody

Find the right “opensource” tools and integrate with CI

* Most tools are commercial, not easy to integrate on Github with PRs

Collaboration from other developers

* Either, reviewing and fixing

Apply it to the full scope of a project.

Example: MISRA-C Rule 15.5

Rule 15.5 - A function should have a single point of exit at the end
* Most readable structure

* Less likelihood of erroneously omitting function exit code

* Required by many safety standards.

- |[EC61508

 [SO 26262

Users demand Accountability

* Feature richness and completeness is not enough

« Adoption barrier unless there is a clearly identified entity that is responsible for the
software and safety sign-off

* Main reason why adoption of open source software is limited for higher safety integrity
levels

 "Who s liable if something goes wrong?”

Even with a certified offering, open or proprietary* and with a clearly accountable
entity behind it, it is difficult to have early adopters (Nobody wants to be first).

How to approach certification in open-source

Snapshotting a Source Tree (branch),
validating it then controlling updates is a
viable approach to software qualification

» Build a cathedral on top of (or beside) the
bazaar

Getting supported feature set right is most
important up front decision

« The more you support, the more documentation
and testing you are going to provide

Automate as much of the information
tracking as you can

Auto-generate documents from test and
issue tracking systems

Get proof of concept approval from a
certification authority as early as possible

Cathedral

Y
I

Bazaar

The Ideal Project

Has a split development model:
* Flexible open instance: developed as usual in the open with community participation

« Auditable and controlled instance: Branch with well defined scope developed with
stricter rules and with an entity behind it.

« Auditable instance aligns with the open instance at a cadence dictated by necessity and
certification cost.

* The entity running the auditable code base has experience with assessment and certification
and sas ideally already been down this route before and has ideally gotten the blessing of
users by way of product deployments

« An open source community helps enrich the open instance at a suitable pace by open
collaboration. Everyone benefits from this instance.

* The owning entity maintains the auditable instance and takes on the certification

qualification overheads. Users who want assurances engage with the owning entity (they get
to point the finger).

Example: Regulating the Bazaar

* Code is available publicly and can be scrutinized by anyone.

 Code Reviews and direct user feedback help improve quality

However...

* Do we have the right set of reviewers?
 Who gets to have the final say?
 How do we guarantee that the reviewer is aware of Safety implications?

* For how long should changes be reviewed?

Zephyr: Pull Request Processing Times

Days it take to merge a pull request

10000

1000
. \
10

1

Count

NN
\\

\.

QO A% a6 & 17 oP ,\Q‘b ,\Qg) \uh ,\Qﬁ. AP ,\g% %\6 ,Lrbbn ?,‘3?' '?:‘0 ‘?.-%% ,506 fg,r?'h' ,bp.‘l %60 ,51% ,596

l

0

Days

—— Optimal

Contributions vs Reviews

Submissions vs. Review comparison

2,000
@
1,500
:
'% 1,000
o
°
¢ []
500 P
.o
Problem?. .. ® °
WY, O
0 50 100 150 200 250 300 350 400 450 500 550 600
Submissions

Reviewers, Reviey

SafeRTOS did something similar, not quite!

* FreeRTOS-compatible alternatives from Wittenstein
« SafeRTOS was rebuilt from the same code base for compatibility.

« SafeRTOS has been rewritten and meets the requirements of the IEC 61508 safety
standard.

Not the ideal model for open-source

“"I‘
‘Ur‘ ..’m,_:

Zephyr: a modular RTOS

Challenge ~ Solution, Zephyr

Many COmpanieS and business groups = A small, modular, open source, real-time operating
paying for different real time OS system .(RTOS) for use on connected resource-

_ _ constrained and embedded controllers
solutions, for small connected devices

= Supports diverse use cases and architectures
and embedded controllers.

= Focused on safety, security, connections with

This lead to costly, time consuming . Bluetooth support, and a full native networking
and divergent solutions for Inteland | stack
: = Apache 2.0 license, hosted at Linux Foundation
our customers :
Ecosystem Support - Stack Zephyr 05
3 Party Libraries
o Applicati)c/)n Services
.) aRISCY Middleware/Networkin
‘ lntel ﬁg tegilica OS Services]
\\\\\2 Kernel

Processor

ARM - Cnios I/ L

Project Members

(intel) NoRmE
. : ’ SEMICONDUCTOR
Platinum Smarter Things
Members

Silver N

. . . /} m
Members @runtlme.lo OtlEng[s\T sivantos lﬁ’sr-ll;EUxﬁlS-:NTs cloudofthings

the hearing company

synopsys ['S SSIZVERED BN

Zephyr — A fully featured RTOS

Zephyr is a small, modular, open-source real-time operating system (RTOS) for use on resource-constrained systems
covering diverse use cases and supporting multiple architectures.

Safety

*Thread Isolation

«Stack Protection
(HW/SW)

«Quality Managed (QM)

«Build time
configuration

+No dynamic memory
allocation

*FuSA (2019)

Security

*User-space support
*Crypto Support
«Software Updates

Configurable &
Modular

«Zephyr Kernel can be
configured to runin as
little as 8k RAM

«Enables application
code to scale

«Configurable and
Modular

Cross Platform

«Support for multiple
architectures

«Native Port

«Developed on Linux,
Windows and MacOS

Open Source

eLicensed under Apache
Il License

«Managed by the Linux
Foundation*

eTransparent
development

«Fork it on Github!

Connected

«Full Bluetooth 5.0
Support

*Bluetooth Controller

«BLE Mesh

«Thread Support

«Full featured native
networking stack

«DFU (IP+BLE)

Zephyr is not an ingredient, Zephyr provides a complete solution.

Architecture and Key Features

Highly Configurable, Highly Modular Application

Smart Objects / High Level APIs / Data Models

B LwM2M MQTT HTTP CoAP

DTLS TLS

Cooperative and Pre-emptive Threading

Application Services

Memory and Resources are typically statically allocated T

Integrated device driver interface S

6LoWPAN

*
n Low Level API

Device
Management

o O 0O O O

Memory Protection: Stack overflow protection, Kernel object and
device driver permission tracking, Thread isolation

OS Services

File System
Logging/
Debug
Database/
Properties

O Bluetooth® Low Energy (BLE 4.2, 5.0) with both controller and
host, BLE Mesh L

Kernel Services / Schedulers

Power Management

kernel
A

O Native, Fully featured and optimized networking stack

Platform

O Industrial Protocols
Sensors Crypto HW

Fully featured OS allows developers to focus on the application

Why Zephyr?

The Zephyr OS addresses broad set of embedded use cases across a broad set of platforms and architectures using a
modular and configurable infrastructure.

-
2
-

1]
-

c

]

£

Qo

©

—
L

%]

n

(W)

P
e
©
<

» No single RTOS addresses broad set of
embedded use cases across a broad set of
platforms and architectures

« Disjoint use cases have led to fragmentation
in RTOS space

« Existing commercial solutions force roll
your own solutions and duplication of
software components

Reduce costs and improve efficiency through reuse

Modular Infrastructure

« Modular and configurable infrastructure
allows creation of highly compact and
optimal solutions for different products
from a common origin

« Reuse allows NRE costs to be amortized
across multiple products and solutions

« Multi-architecture support reduces
platform switching costs and vendor lock-in
concerns

Open-Source

« Roll your own is expensive & difficult to
develop & maintain

« Permissively licensed corresponds to ease
of adoption

« Corporate sponsorship assures long term
commitment and longevity

« Community innovation has proven faster for
progression and project development is a
collaboration of industry experts

Feature Richness

« Need for a solution or semi-complete
solution rather than just an ingredient.

« Lowers entry level barrier for new products
and speeds up software delivery using
existing feature and hardware support

« Encourages adherence to standards and
promotes collaboration on complex
features inside the organization

« Developers focus on the end-user facing
interfaces instead of re-inventing low level
interfaces

Zephyr Roadmap 2018/2019

d Safety and Security O Introduce and support Zephyr as an E2E platform:

O FuSa Capable: Secure and harden the Kernel to O Bootloader (1.11)

meet IEC61508 SIL 3 (2019+) _ _
O Device Firmware Updates (1.11)

0 Thread Isolation, User-space, Stack Protection
0 Cloud Connectivity

0 Development model and process with security

and safety in mind 0 Development Tools
Q Secure and harden the Kernel (1.14) O Eco System, Portability
J MISRA-C 2012 Compliance (1.14) O Improve support on Mac* and Windows* (1.11)

Q Trusted Execution Environments (1.14) O IDE integration (1.14)

- Expand use cases and application areas 3rd Party Tools: Tracing, Profiling, Debugging... (1.13)

O Industrial, safety and security features (1.14) _ _
LLVM, Commercial compilers, .. (1.14)

L Deep Embedded usages

L O O

Standard APIs and Portability: POSIX Layer (PSE54),
O Advanced Configurations and use cases: BSD Socket (1.12), CMSIS RTOS v1 (1.13)
Multicore, SMP, AMP, .. (1.12)

Roadmap to FUSA & Security Pre-Cert.

1. Limit the Scope

«Limit to officially supported and maintained code
«Start of the lowest layers and go up the stack

2. Robustness and operational safety

«MMU and MPU support
«Thread Isolation
«Stack Protection

3. Enhance and Increase Test Coverage

scope

4. Compliance with coding and style guidelines,

development process

+MISRA-C Compliance (MISRA-C:2012)

5. Well defined and Stable APIs

6. Portability

*Support POSIX APIs (PSE52, long term PSE54)

Robustness

Zephyr OS

3 Party Libraries

Application Services

Middleware

Testing (Full Coverage)

POSIX

OS Services

Kernel

HAL

Candidate Standards

Coding for Safety, Security, Portability and Reliability in Embedded Systems:

* MISRA C:2012, with Amendment 1, following MISRA C Compliance:2016 guidance

Safety

« IEC61508: 2010 (SIL 3, but possibly SIL 4)
« broadest for robotics and autonomous vehicle engineering companies. Reference for other
standards in Robotics domain.

« Sampled Certifications derived from IEC61508: Medical: IEC 62304; Auto: ISO 26262; Railway:
EN 50128

Security

* Common Criteria (EAL4 but possibly higher levels EAL5,6)

Others

* Medical: FDA 510(K), 1SO 14971, IEC 60601; Industrial: UL 1998, ??

https://www.misra.org.uk/Buyonline/tabid/58/Default.aspx
https://misra.org.uk/LinkClick.aspx?fileticket=V2wsZxtVGkE=&tabid=57
https://misra.org.uk/LinkClick.aspx?fileticket=w_Syhpkf7xA=&tabid=57
https://en.wikipedia.org/wiki/IEC_61508
http://www.clearsy.com/en/2011/06/the-iec-standard-and-its-derivatives/
https://en.wikipedia.org/wiki/Common_Criteria

Zephyr Long Term Support (LTS)

Itis
d Product Focused
d Compatible with New Hardware: We will make point releases throughout the
development cycle to provide functional support for new hardware.
1 More Tested: Shorten the development window and extend the Beta cycle to allow for
more testing and bug fixing

O Certifiable: The base for the auditable branch
It is not
1 A Feature-Based Release: focus on hardening functionality of existing features, versus

introducing new ones.

d Cutting Edge

Auditable Code Base

SEm e By * An auditable code base will be established from a
subset of Zephyr OS features.

Development [ST Both code bases will be kept in sync from that point
forward, but more rigorous processes (necessary for
certification) will be applied before new features move
into the auditable code base.

h.h

Long Term

Support “Stable” m) Product ready

§ s nseany o Initial and subsequent certification targets to be
decided by Zephyr project governing board.

Auditable m) Product ready

(Pre-certified) Processes to achieve selected certification to be

determined by Security Working Group and
coordinated with the TSC.

iy

Scope for FUSA (in orange)

Application
§ Smart Objects / High Level APIs / Data Models
5
g
Z DTLS TLS
Qo
<
TCP/UDP
c
(V]
g IPv6/IP
o0 v6/IPv4
g 6LoWPAN
1]
POSIX PSE52 Portability Layers Zephyr Public API
g 7
§ Low Level API (Kernel, Services)
8
g
£ o
> R Qo
) 00 © Q
o = © O
= [N) [a)e%
ic 00
o
-
B Kernel Services / Schedulers
g
E, ——
Architecture Interface

Power Management Interrupt Handling Common arch interface

Platform

Sensors Crypto HW

Summary

1 Functional Safety and Security requirements need to coexist with the open-source
nature of the project

1 Quality needs to be driven on the project level
L Need to showcase our quality process and test plans publicly
O Drive adoption through quality managed release process

1 Manage Developer and Contributor Expectations

 Continue innovating on main tree while hardening and stabilizing Zephyr LTS, ,the
base for any auditable branches

1 Need to officially establish accountability and trusted “entity”, i.e. with Certification
Architect role in the project

Get Started

Website
Documentation
Git Repository (Code)

Issues

Mailing lists

http://www.zephyrproject.org/
http://docs.zephyrproject.org/
https://github.com/zephyrproject-rtos/zephyr

https://github.com/zephyrproject-
rtos/zephyr/issues

https://lists.zephyrproject.org/mailman/listinfo

