
MLC/TLC NAND support: (new ?)
challenges for the MTD/NAND

subsystem

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 1/47



Boris Brezillon

I Embedded Linux engineer and trainer at Free Electrons
I Embedded Linux and Android development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux, Linux driver development, Android system
and Yocto/OpenEmbedded training courses, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributions
I Kernel support for the AT91 SoCs ARM SoCs from Atmel
I Kernel support for the sunXi SoCs ARM SoCs from

Allwinner

I Living in Toulouse, south west of France

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 2/47

http://free-electrons.com


Agenda

Context description
What is this talk about ?
NAND Flash technology
Flash memory handling in Linux

MLC Constraints
Paired pages
Unpredictable voltage level
Data retention problems
Power-cut related problems

Proposed Solutions
Paired pages
Unpredictable voltage level
Data retention problems

Conclusion

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 3/47



Context: What is this talk about ?

I Explaining the constraints induced by MLC chips and
comparing them to SLC chips

I Detailing the current Linux Flash handling stack and pointing
missing stuff to properly handle MLC chips

I Going through main MLC constraints and describing existing
solutions or proposing new solutions to address them

I Be careful: most of this talk is describing hypothetical changes

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 4/47



Context: Short description of the NAND technology

I Encode bits with Voltage levels

I Start with all bits set to 1

I Programming implies changing some bits from 1 to 0

I Restoring bits to 1 is done via the ERASE operation

I Programming and erasing is not done on a per bit or per byte
basis

I Organization
I Page: minimum unit for PROGRAM operation
I Block: minimum unit for ERASE operation

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 5/47



Context: NAND Flash organization

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 6/47



Context: What are MLC NAND chips ?

I Standard NAND chips are SLC (Single-Level Cells) chips
I MLC stands for Multi-Level Cells

I Multi is kind of misleading here, we’re talking about 4 level
cells: b00, b01, b10, b11

I One cell contains 2 bits

I Bigger than SLC chips, but also less reliable

I Requires more precautions when accessing the chip (true for
both read and write accesses)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 7/47



Context: MLC vs SLC Cell

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 8/47



Context: Flash related layers in the Linux kernel

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 9/47



Context: MTD

I Provide an abstraction layer to expose all kind of memory
devices (RAM, ROM, NOR, NAND, DATAFLASH, ...)

I Does not care about how memory device is accessed: that’s
MTD driver responsibility

I Expose methods to access the memory device
(read/write/erase)

I Expose memory layout information
I erasesize: minimum erase size unit
I writesize: minimum write size unit
I oobsize: extra size to store metadata or ECC data
I size: device size
I flags: information about device type and capabilities

I MTD drivers should fill layout information and access
methods in mtd_info and then register the device

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 10/47



Context: NAND and NAND driver

I Provide an abstraction layer for raw NAND devices

I Take care of registering NAND chips to the MTD layer

I Expose an interface for NAND controllers to register their
NAND chips: struct nand_chip

I Implement the glue between NAND and MTD logics
I Provide a lot of interfaces for other NAND related stuff:

I ECC controller: struct nand_ecc_ctrl
I Bad Block handling: struct nand_bbt_descr
I etc

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 11/47



Context: UBI

I Stands for Unsorted Block Interface
I Deal with wear leveling

I Distribute erase block wear over the whole flash
I Take care of moving data from unreliable blocks to reliable

ones
I Take care of marking bad blocks (after torturing them)

I Provides a volume abstraction layer
I Volume are not composed of physically contiguous blocks
I Volume are not attached specific erase blocks
I Can be dynamically created, removed, resized or renamed

I Makes use of the MTD abstraction to access memory devices

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 12/47



Context: UBI

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 13/47



context: ubi metadata

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 14/47



Context: UBIFS

I Stands for UBI File System

I Rely on the UBI layer for the wear leveling part

I Journalized file system created to address JFFS2 scalability
problems

I I won’t detail UBIFS architecture here:
I It would take too long
I I’m not qualified enough to describe it

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 15/47



MLC Constraints

I Paired pages impose care when programming a page

I Voltage thresholds delimiting each level might change with
wear

I More prone to bit-flips

I Sensitive to systematic data pattern

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 16/47



MLC Constraints: paired pages

I MLC embed 2 bits in each cell
I Why are NAND vendors so mean to us poor software

developers ?
I One bit assigned to one page and the other one to another

page
I TLC cells embed 3 bits: same problem except pages are paired

by 3
I Changing the cell level is a risky operation, which, if

interrupted, can lead to undefined voltage level in this cell
I Since the same cell is shared by several pages, programming

one page might corrupt the page(s) it is paired with
I Each NAND vendor has its own scheme for page pairing, this

forces us to provide a vendor specific (if not chip specific)
function to get which pages are paired

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 17/47



MLC Constraints: paired pages

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 18/47



MLC Constraints: adapting voltage thresholds

I Voltage level stored when programming a cell might change
with wear

I Becomes problematic when the level cross the voltage
threshold used by the internal logic to determine values stored
in cells

I Can be fixed by ECCs if the number of impacted cells stays
low

I Requires a solution when the number of impacted cells is too
important

I Solution: move voltage thresholds to deal with this situation

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 19/47



MLC Constraints: adapting voltage threshold

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 20/47



MLC Constraints: data retention

I NAND cells are not indefinitely maintaining their state

I External environment (like temperature) can reduce data
retention

I First source of data retention problems are read/write
disturbance

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 21/47



MLC Constraints: read and program disturbance

I This problem is seen on all NAND chips (including SLC) but
happen more frequently on MLC/TLC NANDs

I Read disturbance:
I Is caused by a read command
I Might impact the page currently being read or other pages in

the same block

I Program disturbance:
I Is caused by a program command
I Might impact other pages in the same block

I The most problematic disturbance are those appearing on
other pages than the one being accessed

I Requires scanning all pages (or at least those rarely read) in
background to detect those where the number of bit-flips
exceed the bit-flips threshold

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 22/47



MLC Constraints: read and program disturbance

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 23/47



MLC Constraints: avoiding systematic data patterns

I Some MLC chips are sensitive to systematic data patterns

I Scramble data to avoid writing such pattern

I Require a descrambling phase when reading data from the
NAND

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 24/47



MLC Constraints: unstable bits

I Not an MLC problem per se (also happens on SLC chips)
I Interrupted PROGRAM/ERASE operations might lead to

unstable bits
I Cells can store the correct value for some time
I Suddenly return erroneous values

I Fully described here: http://www.linux-

mtd.infradead.org/doc/ubifs.html#L_unstable_bits

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 25/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits


Paired pages handling: First proposal

I Only write on one of the paired pages
I Pros:

I Simple to implement
I Can be handle at the NAND layer only
I Some chips provide an SLC mode (even simpler to implement)

I Cons:
I You loose half the NAND capacity (even more in case of TLC

chips)

I Implementation details:
I Declare the chip as having half (or one-third in case of TLC)

the effective size
I Use the SLC mode if it exists
I Or only write on the pages that are assigned the first bit of

each cell
I In any case hide the logic to the upper layers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 26/47



Paired pages handling: Second proposal

I Differentiate ’safe’ and ’unsafe’ LEBs
I Safe LEBs: only use one bit of each cell

I UBI deals with paired pages and expose a linear view to users
I Users have to take safe LEB size into account
I Put safe LEB in a pool first time it is unmapped
I Use pages from the 2nd group when mapped again
I Erase it the second time it is unmapped

I Unsafe LEBs expose all LEB capacity
I Users have to deal with paired pages themselves
I Or accept to loose some data
I Or atomically program/update LEBs

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 27/47



Paired pages handling: Second proposal

I Pros:
I Reduce wear (safe LEBs are reused twice before being erased)
I Provides fine grained control over which operations are sensible

and which one are not

I Cons:
I Still can’t use the whole flash capacity
I More complicated to implement than 1st proposal
I Impact all layers up to UBIFS

I Usage:
I Safe LEB: file system journal where each entry should be

consistent
I Unsafe LEBs: atomic LEB update where a CRC is used to

ensure whole LEB consistency

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 28/47



Paired pages handling: Second proposal

I Implementation details:
I NAND and MTD layers are exposing paired pages information
I UBI should never use pages paired with the EC and VID

headers
I UBI provides a way to declare safe and unsafe LEBs

I Safe LEBs: only using half (or one-third) of the block capacity
so that all writes are safe

I Safe LEB marker in ubi_vid_hdr

I UBIFS makes use of the unsafe/safe LEB capabilities
depending on each operation and the associated required
reliability (log update, garbage collection, etc)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 29/47



Paired pages handling: Third proposal

I Yet to be proposed ;-)
I Give more control to UBIFS ?
I Solution proposed here: http://www.linux-

mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc
I Let UBIFS decide when a LEB should be safe (pages paired to

the already programmed ones should not be touched)
I Should be done when committing changes (FS sync) ?

I My knowledge of the UBIFS infrastructure is quite limited
I Should be discussed with the UBIFS Maintainer: Artem

Bityutskiy
I UBI should hide pages paired with VID and EC headers
I Pros:

I Better use of the overall NAND capacity ?
I Cons:

I Far more complicated to implement: UBIFS has to directly
deal with paired pages

I Only UBIFS will benefit from the paired pages handling (but
are there other RW UBI users anyway ?)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 30/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_ubifs_mlc


Paired pages handling: Third proposal

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 31/47



Paired pages handling: Third proposal

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 32/47



Handling unpredictable voltage threshold

I NAND vendors provide a way to tweak the cell level threshold,
but ...

I There is no standard way to do that
I Each vendor implement it differently
I This might differ even with NAND chips from the same

manufacturer
I While mandatory, this feature is not (or poorly) documented

I Detecting the appropriate threshold is not that simple and this
value is only valid for a given block

I It depends on block wear, but there is no paper describing
how we should choose it (depends on the number of
erase/program cycles, but how ?)

I Iterating over modes implies a performance penalty, since the
page has to be read several times

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 33/47



Handling unpredictable voltage threshold

I Micron implementation is already supported in mainline
I But, existing core code ...

I stops searching for the best read-retry mode as soon as a page
is successfully read (even if the number of bit-flips exceed the
bitflips_threshold value)

I does not save the last valid read-retry mode: performance
penalty at each read

I What’s missing ?
I A way for vendor specific code to be registered (assign the

setup_read_retry callback)
I Some fixes to the existing implementation to find the best

read-retry mode
I Optional: store best read-retry mode in memory
I Optional: guess best read-retry mode from erase counter

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 34/47



Preventing uncorrectable bit-flips: First Proposal

I Regularly read all pages to detect pages/blocks where the
bit-flips threshold is raised

I Problem: a page read might generate read disturbance and
corrupt other pages in the same block

I Better read a full block
I Solution proposed (and developed) by Richard Weinberger

I At UBI level
I Creation of a new user-space interface (sysfs) to trigger a full

volume scan
I Scan done in background (in the UBI thread, or an

independent one)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 35/47



Preventing uncorrectable bit-flips: First Proposal

I Pros:
I Rather simple implementation
I Pretty easy to use
I Let user-space decide when the scan is necessary

I Cons:
I Force user-space to store information on the last scan and

logic about when to scan next time
I Launching a full scan might be ineffective in some cases (some

blocks are read quite often and do not need to be scanned)
I Performance penalty when reading/programming while a scan

is in progress (the operation might have to wait for the page
read to finish)

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 36/47



Preventing uncorrectable bit-flips: Second Proposal

I UBI layer can store useful information/statistics about
I read and write accesses
I number of corrected bit-flips

I UBI can make use of these statistics to decide when to read
each page/block

I Pros:
I All the complexity is hidden to user-space
I More efficient in term of useful page/block reads

I Cons:
I Far more complicated to implement
I Increase memory footprint
I Still require one full scan at boot (to restore the database)
I Performance penalty when reading/programming while a

bit-flip detection is in progress

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 37/47



Avoiding systematic data pattern: data scramblers

I Should be handled in the NAND layer

I Better use a hardware scrambler, but software implementation
is possible

I Same approach as for ECC handling

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 38/47



Avoiding systematic data pattern: data scramblers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 39/47



Data scrambler: implementation details

I Data scrambling can be hidden in NAND controller driver’s
implementation, but

I You’ll have to use your own read/write implementations
I If we ever decide to add a mode to disable the scrambler when

accessing the NAND, you’ll have to implement more functions
I Factorizing common operations in default helper functions is

always a good thing
I Trying to match a common model always makes you think

twice before coding dirty hacks ;-)

I The proposed interface is trying to be as much generic as
possible, but was designed with 2 implementations in mind

I The sunxi NAND controller one
I A software based implementation using the LFSR algorithm

I Please let me know if your scrambler does not fit in the model
proposed here

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 40/47



Data scrambler: implementation details

enum nand_scrambler_action {

NAND_SCRAMBLER_DISABLE,

NAND_SCRAMBLER_READ,

NAND_SCRAMBLER_WRITE,

};

struct nand_scrambler_ops {

int (*config)(struct mtd_info *mtd, int page, int column,

enum nand_scrambler_action action);

void (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);

void (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);

};

struct nand_scrambler_layout {

int nranges;

struct nand_rndfree ranges[0];

};

struct nand_scrambler_ctrl {

struct nand_scrambler_layout *layout;

struct nand_scrambler_ops *ops;

};

[...]

struct nand_chip {

[...]

struct nand_scrambler_ctrl *scrambler;

[...]

};

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 41/47



Data scrambler: implementation details

I Scrambler layout (struct nand_scrambler_layout)
I Describes area that should not be scrambled
I Particularly useful for Bad Block Markers
I Not mandatory but highly recommended if feasible

I Scrambler operations (struct nand_scrambler_ops)
I config

I configure the scrambler block for a READ or WRITE operation,
or disable it

I page and column arguments are necessary to setup the
appropriate key or seed value in the scrambler block

I read_buf and write_buf
I wrapper functions responsible for enabling the scrambler block

before calling NAND controller read_buf or write_buf and
disabling it after the operation is done

I Not mandatory if you do not rely on default helpers

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 42/47



Data scrambler: implementation details

I Proposed an implementation a year ago:
https://lkml.org/lkml/2014/4/30/721

I Proof of concept available here:
https://github.com/bbrezillon/linux-

sunxi/tree/sunxi-nand-next

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 43/47

https://lkml.org/lkml/2014/4/30/721
https://github.com/bbrezillon/linux-sunxi/tree/sunxi-nand-next
https://github.com/bbrezillon/linux-sunxi/tree/sunxi-nand-next


Unstable bits handling

I Part of a solution described here: http://www.linux-

mtd.infradead.org/doc/ubifs.html#L_unstable_bits

I That’s a topic I haven’t thought about yet

I Any proposal is welcome

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 44/47

http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_unstable_bits


We need NAND chip vendors help

I Most solution proposed in this talk are based on experiments
and not facts or statistics

I NAND chip vendors could help us by
I Documenting undocumented or (poorly documented) parts

I How to change voltage threshold
I Impacts of systematic data pattern
I Impacts of power-cut failures on data reliability (unstable bits

issue)

I Providing statistics on
I Cells wear evolution
I Impacts of wear on voltage level
I Impacts of read/write disturbance (to determine how often a

block should be scanned)

I Proposing new approaches to deal with MLC constraints

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 45/47



What’s next ?

I Most of the solution proposed here are either untested ones or
just proof of concepts

I Need to discuss them with MTD, UBI and UBIFS maintainers
I Provide MLC chips constraints emulation in order to test

UBI/UBIFS MLC related stuff with checkfs
I Provide implementations and iterate till they are accepted

I Doing that on my spare time: don’t expect to see things
coming quickly

I Any kind of help is welcome: new ideas, implementations,
tests, reviews, ...

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 46/47



Questions?

Boris Brezillon

boris.brezillon@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

Free Electrons - Embedded Linux, kernel, drivers and Android - Development, consulting, training and support. http://free-electrons.com 47/47

http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

	Context description
	MLC Constraints
	Proposed Solutions
	Conclusion

