
Marcin Pasinski
Mender.io

Develop your Embedded Applications Faster:
Comparing C and Golang

My view on C vs Go

● I think Go is great and very
productive programming language

● It excels when developing
networking code

● I’m not considering it a
replacement or competitor for C

● Among the other things garbage
collection alone ensures that

Agenda

● What is Go
● Why did we choose go
● Go basics
● Code samples
● Demo

Who am I?

● Marcin Pasinski

○ 10+ years in software development

○ M. Sc., Electronics and Telecommunication

○ marcin.pasinski@northern.tech
■ OTA updater for Linux devices

■ Integrated with Yocto

■ Open source (Apache v2 license)

■ Written in Go

■ Configuration management tool

■ Open source (GPL v3 license)

■ Written in C

What is Go: timelines

September 21,
2007

May
2008

November 10,
2009

August 24,
2017

Ian Taylor
started GCC
front end

Public open
source

Go v1
released

Go v1.9
Robert Griesemer, Rob
Pike and Ken Thompson
started sketching

March 28,
2012

What is Go?

● “Go was born out of frustration with existing languages and environments for
systems programming.”

● “One had to choose either efficient compilation, efficient execution, or ease of
programming; all three were not available in the same mainstream language.”

https://golang.org/doc/faq

Language requirements

1. “External impact”
○ Size requirements on device
○ Setup requirement in Yocto Project
○ Possibility to compile for multiple platforms

2. “Internal considerations”
○ Competences in the company
○ Code share/reuse
○ Development speed
○ Access to common libraries (JSON, SSL, HTTP)
○ “Automatic memory management”
○ “Security enablers” (buffer overflow protection, etc.)

Language comparison
C C++ Go

Size requirements in devices Lowest Low (1.8MB more) Low (2.1 MB more, however will increase
with more binaries)

Setup requirements in Yocto None None Requires 1 layer (golang)*

Competence in the company Good Have some long time users Only couple of people know it

Buffer under/overflow protection None Little Yes

Code reuse/sharing from CFEngine Good Easy (full backwards compatibility) Can import C API

Automatic memory management No Available, but not enforced Yes

Standard data containers No Yes Yes

JSON json-c jsoncpp Built-in

HTTP library curl curl Built-in

SSL OpenSSL OpenSSL Built-in

* Go is natively supported by Yocto Project from Pyro release (Yocto 2.3)

Yocto build comparison

C C++ C++/Qt Go ...

Pure image size 8.4MB 10.2MB 20.8MB* 14.6MB

Size with network stack 13.4MB
(curl)

15.2MB
(curl)

20.8MB* 14.6MB

Shared dependencies Yes Yes Yes No/Maybe

Extra Yocto layer needed No No Yes Yes**

Deployment complexity Binary Binary Binary + Qt Binary

* Required some changes to upstream Yocto layer
** Go is natively supported by Yocto from Pyro release (Yocto 2.3)

Why did we pick up Go?

1. Golang has lots of core language features and libraries that allows much faster
development of applications.

2. The learning curve from C to Golang is very low, given the similarities in the language
structure.

3. As it is a compiled language, Golang runs natively on embedded devices.
4. Go is statically linked into a single binary, with no dependencies or libraries required at

the device (note that this is true for applications compiled with CGO_ENABLED=0).
5. Go provides wide platform coverage for cross-compilation to support different

architectures
6. Similar in size with static C binaries, Go binaries continue to get smaller as their compilers

get optimized.
7. Both the client and the backend are written in the same language

Go vs C: size

● gcc main.c
○ 8,5K

● ldd a.out
○ linux-vdso.so.1
○ libc.so.6

○ /lib64/ld-linux-x86-64.so.2
● gcc -static main.c

○ 892K
● gcc -static main.c & strip

○ 821K

package main

func main() {

 println("hello world")

}

#include <stdio.h>

int main(void)
{
 printf("hello world\n");
 return 0;
}● $ go build

○ 938K
● $ go build -ldflags ‘-s -w’

○ 682K
● $ go build & strip

○ 623K

package main

import “fmt”

func main() {

 fmt.Println("hello world")

}

● $ go build
○ 1,5M

Go vs C: speed

1. Go is fully garbage-collected
2. Go declaration syntax says nothing about stack and heap allocations making

those implementation dependant ($ go build -gcflags -m;)
3. Fast compilation
4. Go provides support for concurrent execution and communication
5. The speed of developer is most important in most cases and Go really excels

here

https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=go&lang2=gcc

https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=go&lang2=gcc

Go basic features

● Standard library
● Tooling
● Compilation
● Concurrency
● Linking with C and C++
● Code samples

Standard library

● Standard library (https://golang.org/pkg/)
○ io/ioutil/os
○ flag
○ net (http, rpc, smtp)
○ encoding (JSON, xml, hex, csv, binary, ...)
○ compress and archive (tar, zip, gzip, bzip2, zlib, lzw, ...)
○ crypto (aes, des, ecdsa, hmac, md5, rsa, sha1, sha256, sha512, tls, x509, ...)
○ database (sql)
○ regexp
○ sync and atomic
○ unsafe and syscall

https://golang.org/pkg/

Tools

○ fmt
○ test
○ cover
○ pprof
○ doc
○ get
○ vet
○ race detector
○ and many more

Compilation

● Compilers
○ The original gc, the Go compiler, was written in C
○ As of Go 1.5 the compiler is written in Go with a recursive descent parser

and uses a custom loader, based on the Plan 9 loader
○ gccgo (frontend for GCC; https://golang.org/doc/install/gccgo)

■ gcc 7 supports Go 1.8.1

● Compilation
○ fast (large modules compiled within seconds)
○ single binary file (no dependencies, no virtual machines)

■ from Go 1.5 possible to create shared libraries and dynamic linking but
only on x86 architecture

○ makefile
(https://github.com/mendersoftware/mender/blob/master/Makefile)

https://golang.org/doc/install/gccgo
https://github.com/mendersoftware/mender/blob/master/Makefile

Cross compilation (https://golang.org/doc/install/source#environment)

$GOOS / $GOARCH amd64 386 arm arm64 ppc64le ppc64 mips64le mips64 mipsle mips

android X

darwin X X X

dragonfly X

freebsd X X X

linux X X X X X X X X X X

netbsd X X X

openbsd X X X

plan9 X X

solaris X

windows X X

Debugging

● Gdb
● Delve (https://github.com/derekparker/delve)

Testing

● Unit tests
● Benchmarks
● All you need:

○ add “_test” to filename
○ add “Test” to function
○ import “testing”

Variables

● Variable declarations

package main

var e, l, c bool

func main() {

 var prague int

 var elc string = “linux”

 var a, s, d = true, false, “data”

 f := 1

}
● Basic types

○ bool
○ string
○ int, int8, int16, int32, int64
○ uint, uint8, uint16, uint32, uint64
○ byte //alias for uint8
○ rune //represents a Unicode point; alias for int32
○ float, float64
○ complex64, complex128

Functions

● Functions
○ take zero or more arguments
○ arguments pass by value
○ multiple return values

func div(x, y int) (int, error) {

 if y == 0 {

 return 0, errors.New("div by 0")

 }

 return x / y, nil

}

func main() {

 fmt.Println(div(4, 0))

}

Structures and methods

● Structs
○ Struct is collection of fields

● Methods
○ Functions with receiver

argument
○ Can be declared on non-struct

objects

type Point struct {

 X int

 Y int

}

type Square struct {

 Vertex Point

 Size int

}

func (s Square) area() int {

 return s.Size * s.Size

}

func (s *Square) setPoint(p Point) {

 s.Vertex = p

}

Interfaces

● Interfaces
○ Set of method signatures
○ Implemented implicitly

■ no explicit declaration
■ no “implements”

● Decoupled definition and
implementation

● Empty interface interface{}

type Printer interface {

 Print() (string, error)

}

type myType int

func (mt myType) Print() (string, error) {

 return “this is my int”, nil

}

main() {

 var p Printer = myType(1)

 i.Print()

}

Concurrency

● Goroutines
■ Functions that run concurrently with other

functions
■ Only few kB initial stack size (2kB)
■ Multiplexed onto OS threads as required

● Channels
■ Used for sending messages and

synchronization
■ Sends and receives block by default
■ Can be unbuffered or buffered

Concurrency cont’d

package main

func main() {

 messages := make(chan string)

 go func() { messages <- "ping" }()

 select {

case msg := <- messages:

 fmt.Println(msg)

case <- time.After(time.Second):

 fmt.Println("timeout")

default:

 fmt.Println("no activity")

 time.Sleep(50 * time.Millisecond)

 }

}

● Goroutines
○ go func()

● Channels
○ c := make(chan int)

C code inside Go

● CGO (https://golang.org/cmd/cgo/)
○ allows Go to access C library

functions and global variables
○ imported C functions are

available under virtual C
package

○ CGO_ENABLED
○ There is a cost associated with

calling C APIs (~150ns on Xeon
processor)

/*

#cgo LDFLAGS: -lpcap

#include <stdlib.h>

#include <pcap.h>

*/

import "C"

func getDevice() (string, error) {

 var errMsg string

 cerr := C.CString(errMsg)

 defer C.free(unsafe.Pointer(cerr))

 cdev := C.pcap_lookupdev(cerr)

 dev := C.GoString(cdev)

 return dev, nil

}

https://golang.org/cmd/cgo/

C++ code inside go

● SWIG
○ Simplified Wrapper and

Interface Generator
○ Used to create wrapper code

to connect C and C++ to other
languages

○ http://www.swig.org/Doc2.0/
Go.html

// helloclass.cpp

std::string HelloClass::hello(){

 return "world";

}

// helloclass.h

class HelloClass

{

public:

std::string hello();

}

// mylib.swig

%module mylib

%{

#include "helloclass.h"

%}

http://www.swig.org/Doc2.0/Go.html
http://www.swig.org/Doc2.0/Go.html

Shared Go libraries

● Possible from Go 1.5
○ -buildmode argument

■ archive
■ c-archive
■ c-shared
■ shared
■ exe

● ~ go build -buildmode=shared -o
myshared

● ~ go build -linkshared -o app
myshared

// package name: mygolib

package main

import "C"

import "fmt"

//export SayHiElc

func SayHiElc(name string) {

 fmt.Printf("Hello ELC: %s!\n", name)

}

func main() {

 // We need the main for Go to

 // compile C shared library

}

Shared C libraries

● ~ go build -buildmode=c-shared -o
mygolib.a mygolib.go

● ~ gcc -o myapp myapp.c mygolib.a

// mygolib.h

typedef signed char GoInt8;
typedef struct { char *p; GoInt n; }
GoString;

extern void SayHiElc(GoString p0);

// myapp.c

#include "mygolib.h"
#include <stdio.h>

int main() {
 printf("Go from C app.\n");
 GoString name = {"Prague", 6};
 SayHiElc(name);
 return 0;
}

Embedded Go

● Heap vs stack
○ go build -gcflags -m
○ ./main.go:17: msg escapes to

heap
● Unsafe code

○ C: *(uint8_t*)0x1111 = 0xFF;
○ Manipulating hardware

directly is possible with GO,
but it has been made
intentionally cumbersome.

file, _ := os.OpenFile("/dev/gpiomem",

 os.O_RDWR|os.O_SYNC, 0);

mem, _ := syscall.Mmap(int(file.Fd()),

 0x20000000, 4096,

 syscall.PROT_READ|syscall.PROT_WRITE,

 syscall.MAP_SHARED)

header :=
*(*reflect.SliceHeader)(unsafe.Pointer(&mem))

memory =
([]uint32)(unsafe.Pointer(&header))

Our experience with Go: cons

1. Messy vendoring of 3rd party libraries
2. Quality of community libraries varies a lot
3. Some issues with Yocto Go layer at the beginning

○ all gone after recent efforts of integrating Go with Yocto
4. While using cgo all the easiness of cross-compiling is gone

Our experience with Go: pros

1. Easy transition from C/Python (took couple of days to be
productive in Go)

2. Very nice tooling and standard library
3. Some tasks exchange between backend and client teams

happened, but we’ve been able to share lot of tools (CI, code
coverage)

4. We can share some code between the client and the backend
5. Really productive language (especially when developing some kind

of network communication)
6. Forced coding standard so all the code looks the same and is easy

to read

Demo

● Yocto
● Mender.io
● ThermoStat ™

○ https://github.com/mendersoftware/thermostat

https://github.com/mendersoftware/thermostat

Q&A

