#### e2V

### e<sub>2</sub>v

Linux Embedded applications in Machine Vision

Embedded Linux Conference – Europe (Grenoble) October 15<sup>th</sup>, 2009

Pascal PELLET

#### e<sub>2</sub>v

## e2v presentation



Machine Vision



e2v GigE Vision IP

Conclusion & Evolution











# e2v presentation: Product Offer



e<sub>2</sub>v

# Medical, Industrial & Emerging Imaging CCD sensors





CMOS sensors







## Space & Scientific Imaging

Space



Scientific Imaging



## **Mixed Signal ASICs**

Sensor Signal conditioning ICs





Broadband Data Converters





Assembly & Test services

## e2v presentation Fields of application



e2V

Aerospace

Defence

Automotive

**Industrial Imaging** 









Telecom

Instrumentation

Medical

**Industrial** 









#### e<sub>2</sub>v

e2v presentation



**Machine Vision** 



GigE Vision protocol



e2v Gige Vision IP



Conclusion & Evolution





e<sub>2</sub>v

→ For industrial market, e2v semiconductors is a world leader in development and manufacturing of camera for Machine Vision





e<sub>2</sub>v

→ System based on cameras and acquisition systems (frame grabber, PC, ...)









- → Used in industry for
  - → Foods (sort rice, fruit inspection,...)
  - → Checking goods (web, papers, wood, glass, flat panel)











- → e2v, with other Machine Vision companies, contributes to the development of industrial standards, including:
  - → Camera Link
  - → GigE Vision













#### e2v presentation



e2v presentation



**Machine Vision** 



**GigE Vision protocol** 



e2v GigE Vision IP



Conclusion & Evolution



## GigE Vision protocol: Overview





- → GigE Vision® is a camera interface standard developed, based on Ethernet protocol.
- → Main benefits
  - → fast image transfer: High bandwidth (1000 Mbps) allows large uncompressed images to be transferred quickly in real time
  - → low cost standard cables over very long lengths (100 meters)
  - → Data transfer up to Standard gigabit Ethernet hardware allows single/multiple camera connection to single/multiple computers
- → This protocol is managed by AIA (Automated Imaging Association)



- → www.machinevisiononline.org
- → e2v is a member of the Gige Vision development committee with other companies:
  - → NI, Matrox, Pleora ...







## GigE Vision protocol: Overview





- → GEV Protocol
  - → GVCP: GigE Vision Control Protocol
  - → GVSP: GigE Vision Stream Protocol
  - → GEV is based on different phases
    - → IP address allocation
    - → Discovery
    - → Connection
  - → These protocols use UDP IPv4 as the transport Layer Protocol
- → Device description
  - → An xml file describes all the device capabilities (compliant with the GenlCam specification)
    - → One register corresponds to one feature
    - → Understandable by any Genlcam PC software to monitor the camera



# GigE Vision protocol: GigE Vision Control Protocol (GVCP) S I D N

- → GVCP is an application layer protocol relying on the UDP transport layer protocol
- → GVCP provides a set of commands and acknowledges messages to be exchanged between GEV device(s) (camera) and a GEV application(s) (host)
  - → Read/write Register
  - → Read/Write Memory
  - → Discovery
- → Asynchronous Message can be sent by the device: event
- → GVCP packet:

| Layer            | Size |
|------------------|------|
| IP header        | 20   |
| UDP header       | 8    |
| GVCP header      | 8    |
| Max GVCP Payload | 540  |
| Total            | 576  |

# GigE Vision protocol: GigE Vision Stream Protocol (GVSP) VISION

- → GVSP is an application layer protocol relying on the UDP transport layer protocol.
- → It allows an application to receive data blocks from a device.
- → A data block is divided into 3 elements:
  - → Data leader : advises the host of the beginning of the data block
  - → Data Payload : data
  - → Data Trailer : advises the user the end of the data block
- → Payload types:
  - → Image
  - → Raw data
  - → File
  - → Chunk data
  - → Device Specific



#### e<sub>2</sub>v

e2v presentation



**Machine Vision** 



GigE Vision protocol



e2v GigE Vision IP



Conclusion & Evolution



## e2v GigE Vision IP: e2v Generic platform





- → In order to develop a camera supporting GigE Vision, e2v has developed a generic platform based on:
  - → ARM processor (Atmel AT91SAM9263)

→ Linux v2.6.24





# e2v GigE Vision IP: Base bricks to products



- → New base bricks: ➤ New products:
  - → Camera link IP → Camera Link LineScan Camera:



- → 160 Mpixels/sec
- → Mono8-12bit



- → GigE Vision IP → GigE Vision LineScan Camera :
  - → AviivA EM1GE
    - → 120 MPixels/sec
    - → Mono8/12bit



- → Characterization IP → Characterization boards (internal use)
  - → CCD and CMOS Imaging sensors
  - → ADC ...



# e2v GigE Vision IP: fixe issues





- → e2v fixed issues for its products:
  - → <u>Upgradable</u>
  - → Reliability
  - → Reduce the development time

# e2v GigE Vision IP: Benefits



- → What does this platform bring for e2v products
  - → Project
    - → Re-use
    - → Cost Saving
    - → Reliability / Improvement
  - → Development flow
    - → Support and knowledge
    - → Validation and testability
    - → C++ (abstraction, coding efficiency)
  - → Linux services
    - → TCP/IP Stack
    - → PPP
    - → File system management
    - → ARP
    - → Multi thread

# e2v GigE Vision IP Architecture



e2V

→ e2v develops a GigE Vision IP based on this generic platform and a FPGA



# e2v GigE Vision IP: FPGA IP



- → Interfaces with the PHY
- → Manages Ethernet packet
  - → Filter with MAC Address, broadcast packets
  - → Offers RX,TX FIFOs, registers area to the processor
- → FPGA Interruption: advises the processor that Ethernet packets are available
- → RX FIFO: Ethernet packets sent by the host
- → TX FIFO: Ethernet packets sent to the host
- → Manages GVSP packet (streaming)



#### e2v GigE Vision IP: Ethernet driver



- → Configures the PHY
- → Interfaces with the FPGA
- → Configures the FPGA (Mac Address ...)
- → Copies packets from FPGA RX FIFO to the TCP/IP stack
- → Copies packets from TCP/IP stack to the TX FIFO



# e2v GigE Vision IP: GEV driver



e2V

→ Access to FPGA GEV Registers processor appli libGEV ethernetTL Tcp/lp Stack **Ethernet Drv GEV Drv** Fifo RX FPGA GevIP (GVCP) Source (image)

## e2v GigE Vision IP: EthernetTL library



e2V

- → Loads the FPGA
- → Mounts the Ethernet driver
- → Sets Mac address



### e2v GigE Vision IP: GigE Vision Library (libGEV)



- → Offers all GigE Vision based features
- → Mounts the Ethernet connection (through ethernetTL)
- → IP address Allocation
- → Discovery
- → Read/Write memory/register
- → GEV registers configuration



#### e<sub>2</sub>v

e2v presentation



**Machine Vision** 



GigE Vision protocol



e2v Gige Vision IP



**Conclusion & Evolution** 



# **Conclusion & Evolution Performance**



e2V

- → For the control, the gigabit per second is not required.
  - → Max speed: 30Mbit/sec
  - → To improve speed:
    - → Use DMA to read/write into FPGA FIFOs
- → For the streaming the gigabit is required
  - → Max transmission speed 984Mbit/sec

# **Conclusion & Evolution Performance**



e2V

- → Software Interoperability
  - → With the main GEV application software
    - → National Instrument
    - → Matrox
  - → GigE Vision compliant
- → Reliability
  - → Memory allocation
  - → Temperature

#### **Conclusion & Evolution**



- → Other GigE Vision applications:
  - → Medical: X-ray application



- → Evaluation kit/characterization board for image sensors
- → Spectrometry :Swifts (Minalogic project)



- → Smart camera (no real time processing)
  - → Gain control
  - → Light control



#### **Conclusion & Evolution**



e2V

- → Next: 10 gigabit Ethernet
  - → Optical fiber
  - → Copper wire
- → Power Over Ethernet
  - → video surveillance



**Questions & Answers** 

e2V

Any Question ???