
Applying Linux to the Civil
Infrastructure

LinuxCon Japan 2015
3-5 June 2015

Yoshitake Kobayashi1), Toshiba
Urs Gleim, Siemens AG

1) CE Workgroup

2LinuxCon Japan 2015

Scope of this presentation

 Create a place for collaboration

 Share opinions with audience about the “future” of civil

infrastructure systems

 Collect “requirements” for civil infrastructure systems.

 Recruit companies/developers to work with us in this area.

3LinuxCon Japan 2015

Outline

 Definition of Civil infrastructure

 Motivation and goal

 Target Platform Building blocks and

Technical requirements

 Current status

4LinuxCon Japan 2015

Definition

Civil Infrastructure Systems

are technical systems responsible for

supervision, control, and management of

infrastructure supporting human

activities, including, for example, electric

power generation and energy distribution,

oil and gas, water and wastewater,

healthcare, communications,

transportation, and the collections of

buildings that make up urban and rural

communities. These networks deliver

essential services, provide shelter, and

support social interactions and economic

development. They are society's

lifelines.1)

1) adapted from https://www.ce.udel.edu/current/graduate_program/civil.html

Note: Most of Japanese company use “Social infrastructure” instead of “Civil infrastructure”.
However, Civil Infrastructure is more suitable term in other countries.

https://www.ce.udel.edu/current/graduate_program/civil.html

5

Motivation

1. Civil infrastructure systems are currently

built from the ground up for each product,

with little re-use of existing software

building blocks, for example:

 Operating systems

 Virtualization technologies

 Middleware

 Mechanisms for

software/firmware updates

2. Functionality required for industrial-grade

applications is in many aspects converging to

that offered by IT driven solutions1).

However, by today’s software platforms many

non-functional requirements are not

addressed sufficiently:

 Functional Safety

 Reliability

 Maintainability, long term support

 Security

 Real-time support

3. The Internet-of-Things connects previously stand-alone systems with open protocols to create

systems of systems. This trend will substantially influence industrial system architectures.

stand alone connected

1) Open Source Software / Linux

6LinuxCon Japan 2015

Vision

Jointly establish a scalable Open Source “base layer”
of industrial grade software:

 Speed up implementation of civil infrastructure systems.

 Build upon existing open source foundations and expertise without
reinventing non-domain specific technology.

 Establish (de facto) standards by providing a base layer reference
implementation.

 Contribute & influence upstream projects regarding industrial needs.

 Motivate suppliers to actively support these platform / provide an
implementation (e.g. silicon vendors).

 Ensure long term stability and maintainability.

A “base layer” – like the plain operating system – does not contribute to
competitive innovation, but needs to be provided by every single vendor.

7LinuxCon Japan 2015

CIP Reference Hardware

Goals

 Sharing development effort for development of industrial
grade base systems.

 Fill the gap between capabilities of the existing Open
Source Software and industrial requirements.

 Reference-implementation consisting of

 Specification of on-device software stack and tools
infrastructure

 Linux kernel, file system, etc. selected reference
hardware

 Build environment and tools for companies to build their
own distribution.

 Test framework and test cases

 SDK (e.g., poky based) and APIs (based on POSIX;
compatibility layers for legacy APIs)

 Wide usage and acceptance in industry.

 Trigger development of an emerging ecosystem including
tools and domain specific extensions.

CIP Reference

Filesystem

image with

SDK

CIP Kernel

U
s
e

r
s

p
a
c

e
K

e
rn

e
l

Reference-implementation

works with (or can be extended

by) any Linux distribution

(e.g. Yocto Project, Debian,

CentOS, openSUSE, etc..)

H
a
rd

w
a
re

Specifications Documentation

Im
p

le
m

e
n

t

8LinuxCon Japan 2015

Outcome

CIP realizes an industrial grade, sustainable, standard software stack.

Integrated reference platform

implementation and build

environment:

 Reference architecture of

base platform and CIP

specific extensions

 Selection/support of

applicable upstream

projects

 Tool chain set-up, platform

implementation, integration

 Platform implementation

for selected device classes

and use cases

Processes for industrial use

and sustainable

long-term support:

 Test and validation:

frameworks for first release

and updates

 Maintenance strategy and

long term support

(LTS, LTSI)

 License clearing of used

open source components

 Export control classification

(ECC)

 License barrier architecture

guidance

Harmonize base platform and

fulfill certification standards:

 Standardize base platform

components (select exis-

ting standards and fill gaps

with de-facto standards)

 Foster OSS acceptance

for safety/security critical

projects

 Provision of artefacts

needed for certification

(e.g. test reports)

 Development process

assessment of relevant

upstream projects

Reference implementation Life-cycle management Setting standards

9LinuxCon Japan 2015

Comparison with existing Alliances

Other domains already benefit from collaborative development.

Even competing

companies as car

manufacturers work in

alliances already.

(Genivi, for example)

• Development speed,

shorter product

cycles

• Software quality

• Establish a standard

platform and enable

ecosystems
(e.g. for development

tools, system

extensions)

10LinuxCon Japan 2015

Target Systems

Excluded:

 Enterprise IT and cloud system platforms.

Proposed reference hardware for common software platform:

 Start from working the common HW platform, like a PC

 Later extend it to smaller/low power devices.

Architecture, clock

non-volatile storage

HW ref. platform

Processor

(example)
ARM M0/M0+/M3/M4 ARM A53/A57,Xeon

8/16/32-bit,< 100 MHz 32-bit, <1 GHz 32/64-bit, <2 GHz 64-bit, >2 GHz

RAM

n MiB flash n GiB flash n GiB flash n TiB flash/HDD

< 1 MiB 1 MiB - 1 GiB 256 MiB - 2 GiB 2 GiB - 768 GiB

Arduino class board Raspberry Pi class board SoC-FPGA, e.g.Zync industrial PC

ARM M4/7,A9,R4/5/7,Atom

Networked Node Embedded ServerEmbedded ComputerControl Unit

special purpose server based controllerscontrol systems

multi-purpose controllersPLC gateways

Sensor, field device

Target systems

application

examples

1 2 3 4

ARM A9/A15,R7,Core,PPC

nDevice class no.

11

Platform Building Blocks
U

s
e
r

s
p

a
c

e
K

e
rn

e
l
s
p

a
c

e

Linux Kernel

App Container

Infrastructure = TBD
App Framework = TBD

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts
Yocto Project

(recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety

architecture/strategy,
including compliance

w/ standards (e.g., NERC

CIP, IEC61508)

Long-term support

Strategy:
security patch

management

Standardization
collaborative effort with

others

License clearing

ECC
Export Control Classification

On device software stack Product development

and maintenance

Application life-

cycle management

Security

12

Platform Building Blocks
U

s
e
r

s
p

a
c

e
K

e
rn

e
l
s
p

a
c

e

Linux Kernel

App Container

Infrastructure = TBD
App Framework = TBD

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts
Yocto Project

(recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety

architecture/strategy,
including compliance

w/ standards (e.g., NERC

CIP, IEC61508)

Long-term support

Strategy:
security patch

management

Standardization
collaborative effort with

others

License clearing

ECC
Export Control Classification

On device software stack Product development

and maintenance

Application life-

cycle management

Security

13LinuxCon Japan 2015

Requirements: Real-time performance

 Typical Latency

 100μsec - 1msec response time

 100msec network communication frequency

 5msec in control frequency

 Number of I/Os

 Over 10 I/O cards, and 30K in/out-puts

 Resource management

 CPU consumption

 Memory consumption

 Coupled with container technology

 Related activities

 Preempt-RT

14LinuxCon Japan 2015

Requirements: Virtualization

 Real-time safe virtualization

 Multi OS approach (Run with other RTOS beside the Linux)

 E.g. Jailhouse, SafeG

 Virtual machine

 Real-time hypervisor enhancement (KVM)

 Real-time OS API support

 E.g. Xenomai

 Related Activities

 KVM

 Jailhouse

 SafeG by TOPPERS Project

 Xenomai

 V2lin

15

Platform Building Blocks
U

s
e
r

s
p

a
c

e
K

e
rn

e
l
s
p

a
c

e

Linux Kernel

App Container

Infrastructure = TBD
App Framework = TBD

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts
Yocto Project

(recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety

architecture/strategy,
including compliance

w/ standards (e.g., NERC

CIP, IEC61508)

Long-term support

Strategy:
security patch

management

Standardization
collaborative effort with

others

License clearing

ECC
Export Control Classification

On device software stack Product development

and maintenance

Application life-

cycle management

Security

16LinuxCon Japan 2015

Requirements: Security

 Access / execution control
 Access Management (SE Linux/SMACK)

 Anomaly-based prevention systems

 Network security
 Firewall technology

 Untrusted activity detection

 One-Way gate way (Date Diode)

 Non-IP network

 Pervasive Crypto
 Consistent standard cryptographic primitives for all core components

 Trust authority with updated information
 Service that aggregates the security status (tractability) of nodes in the

network and validates certificates

 Test cases for certification
 E.g EDSA IEC62443

 Related activities
 Linux security module

 EDSA

17LinuxCon Japan 2015

Requirements: Reliability enhancements

 High availability

 24/7 operation support

 Failover in less than 5msec

 Live patching with deterministic behavior

 System health monitoring

 Framework for failure detection and recovery

 Hardware error detection

 Error detection (CPU/Memory/BUS etc)

 Error record (trace/Panic Log/Crash dump)

 Degeneration operation support

 Verification test cases

18LinuxCon Japan 2015

Requirements: Update / Deployment

 Hardware update mechanism

 E.g. I/O card hot swap

 Software deployment

 Application deployment and update mechanism (device part)

 Firmware update

 Device management, server side backend

 Related activities

 Livepatch

19

Platform Building Blocks
U

s
e
r

s
p

a
c

e
K

e
rn

e
l
s
p

a
c

e

Linux Kernel

App Container

Infrastructure = TBD
App Framework = TBD

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts
Yocto Project

(recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety

architecture/strategy,
including compliance

w/ standards (e.g., NERC

CIP, IEC61508)

Long-term support

Strategy:
security patch

management

Standardization
collaborative effort with

others

License clearing

ECC
Export Control Classification

On device software stack Product development

and maintenance

Application life-

cycle management

Security

20LinuxCon Japan 2015

Requirements: Long-term support

 Very long term support (e.g. more than 15 years)

 Patch management tools

 Mainly focus on security fixes

 Migration support

 Enable old Linux drivers

 Compatibility evaluation between current and new environment

 Test cases required to ensure it

 Related activities

 Long Term Support Initiative (LTSI)

 LTSI Testing Project

 Driver backport

21LinuxCon Japan 2015

Requirements: Functional safety

 IEC61508

 Development process

 SILx Linux kernel (e.g SIL2, SIL3, SIL4)

 SILx VM

 Monitoring Support

 Non-intrusive system health monitoring

 Related activities

 SIL2LinuxMP

 Jailhouse

22

Platform Building Blocks
U

s
e
r

s
p

a
c

e
K

e
rn

e
l
s
p

a
c

e

Linux Kernel

App Container

Infrastructure = TBD
App Framework = TBD

Middleware/Libraries

Safe & Secure

Update
Monitoring

Domain Specific communication
(e.g. OPC UA)

Shared config. & logging

Real-time support
Real-time /

safe virtualization

Tools Concepts
Yocto Project

(recipes)

Test automation

Tracing & reporting

tools

Configuration

management

Device management
(update, download)

Functional safety

architecture/strategy,
including compliance

w/ standards (e.g., NERC

CIP, IEC61508)

Long-term support

Strategy:
security patch

management

Standardization
collaborative effort with

others

License clearing

ECC
Export Control Classification

On device software stack Product development

and maintenance

Application life-

cycle management

Security

23LinuxCon Japan 2015

Requirements: Communication stacks

 IoT middleware

 AllJoyn

 IoTivity

 OM2M

 Domain specific communication

 ZigBee

 AVnu

 ECHONET (might be ECHONET Lite)

 Other industrial standard protocols

 E.g. Real-time Ethernet

24LinuxCon Japan 2015

Covered topics and related projects

Linux Kernel RTOS

Virtualization / Dual kernel Real-time Safe virtualization

Jailhouse SafeG

Real-time support

Xenomai

Real-time support

PREEMPT-RT

Security

LSM Anomaly-based prevention

Isolation mechanism

Funcional Safety

SIL3 support

LXC Cgroups

Heterogeneous Computing

SoC FPGASIL2LinuxMP

Communication Stacks for IoT

AllJoyn IoTivity

Middleware / Tools

Toolchain

CIP TCK tests Yocto Project

Application support

App Framework HMI Framework

SIL2LinuxMP (OSADL)

Deploy and update mechanism

FW update App deploy Device manager

Update mechanism

Live patching Safe FW update

Testing

kselftest

CIP TCK tests

LTSI test

Integration tests

LTP

Configuration/Device management

Self-config Auto config

Domain specific communication

ZigBee Avnu ECHONET

Industrial specific protocols

Integration with non-RT apps

Monitoring / Tracing

Error detection RAS

Ftrace ktap

Safety

Health monitor

General topics Support

VLTS

Legal topics SPDX

Export Control

Development process

SIL3 supportSIL2 support

(Out of scope)

To be specified / implemented by CIP

Integration / cooperation

Jailhouse

License Clearing

OM2M …

FOSSology

Real-time capable GPGPU

FPGA enhanced real-time

SELinux

Backwards compatibility

25

An example of topic prioritization

26

Detailed prioritization

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Container technology for appplications
CPU Core Isolation

App framework
HMI Framework

Preempt-RT enhancement
Xenomai/Ipipe enhancement

Dual Kernel approach
Integration of real-time and non-RT application components

Standard test cases for real-time capabilities
Real-time capable GPGPU computing

FPGA enhanced real-time

Pervasive Crypto
White-List based execution

Untrusted activity detection

IoT middleware intergration
Domain specific communication stacks

Support for industrial protocols and busses
Device and service discovery

Network autoconfiguration
Self-Configuration

Semantic matching

Application deployment and update mechanism (device part)
Firmware update

Device management, server side backend
Live Patching

CIP specific tests and test test framework
Contribute test cases to upstream projects

Integration tests

Safe partitioning
SIL2 support
SIL3 support
SIL4 support

Monitoring support

Build environement for CIP reference software stack
CIP TCK (Technology Compatibility Kit)

Tracing
System integration examples

Multi-kernel approaches
Integration with standard tool chains

Integration of legacy languages and APIs

Long term support strategy

License clearing
Export control classification

Is
o

la
ti

o
n

M
ec

h
an

is
m

s

A
p

p
lic

at
io

n
su

p
p

o
rt

R
ea

l-
ti

m
e

o
p

er
at

in
g

sy
st

em
 s

u
p

p
o

rt

Se
cu

ri
ty

m
ec

h
an

is
m

s,
 li

b
ra

ri
es

C
o

m
m

u
n

ic
at

io
n

 s
ta

ck
s

an
d

 Io
T

D
ep

lo
y

an
d

u
p

d
at

e
m

ec
h

n
is

m
s,

d
ev

ic
e

m
an

ag
em

en
t

Te
st

in
g

Fu
n

ct
io

n
al

 s
af

et
y

To
o

l c
h

ai
n

,
d

ev
el

o
p

m
en

t
en

vi
ro

n
m

en
t,

sy
st

em
in

te
gr

at
io

n

H
et

er
o

g
en

eo
u

s
co

m
p

u
ti

n
g

B
ac

k
w

ar
d

s
co

m
p

at
ib

ili
ty

Su
p

p
o

rt
an

d
M

ai
n

te
n

a
n

ce
Le

ga
l

to
p

ic
s

essential appreciated optional out of scope

27

Detailed prioritization of Real-time support

28LinuxCon Japan 2015

What’s next?

 Our current activities

 Collecting topics for civil infrastructure

 Topic prioritization

 Discussing with the Linux Foundation regarding organization

 Have conference calls with Linux Foundation and companies

 Have F2F meetings at Linux Foundation’s conference

 Looking for more participating companies

 Civil Infrastructure related vendors

 Silicon vendors

 Tool vendors

 ...

29LinuxCon Japan 2015

Please join!

 Any comments and suggestions are welcome

 Contact information

 To get the latest information, please send an email to the
following address:

 Noriaki Fukuyasu fukuyasu@linuxfoundation.org

 Urs Gleim urs.gleim@siemens.com

 Yoshitake Kobayashi yoshitake.kobayashi@toshiba.co.jp

 Satoshi Oshima satoshi.oshima.fk@hitachi.com

mailto:fukuyasu@linuxfoundation.org
mailto:urs.gleam@siemens.com
mailto:yoshitake.kobayashi@toshiba.co.jp
mailto:satoshi.oshima.fk@hitachi.com

30LinuxCon Japan 2015

Questions?

31LinuxCon Japan 2015

Thank you

