
Embedded	
 Linux	
 applications	

for	
 autonomous	
 UAVs

Flying
Penguins

Clay McClure
twitter.com/claymcclure
github.com/claymation

stabilization
telemetry

failsafes
missions

≠AUTO

PILOT

AUTO

NOMOUS

AUTONOMY

“system finds its own goal positions”

where to go

“system finds its own goal positions”

AUTONOMY

where to go
how to get there

“system finds its own goal positions”

AUTONOMY

where to go
how to get there
what to do next

“system finds its own goal positions”

AUTONOMY

SO MANY

ALGORITHMS,

SO LITTLE

MEGAHERTZ
http://ra3ndy.deviantart.com/art/Sad-Panda-69204875

+

• Real-time kernel
• Hardware drivers (SPI, I2C, CAN, UART)
• Device trees
• Programmable real-time units
• PixHawk Fire Cape
• BeaglePilot project

Autopilot runs on Linux

• Linux runs on a companion computer
• RS-232 serial interface to autopilot
• Treat the autopilot as a peripheral
• This is what I’m talking about today

Autopilot talks to Linux

ODROID-XU3 Lite
• Samsung Exynos5422 octa core

• 4x Cortex™-A15 2.0GHz

• 4x Cortex™-A7 1.4GHz

• 2 GB RAM

• 32+ GB flash

• 4x USB 2.0 + 1x USB 3.0

Your App

Autopilot

Your App

Autopilot

Middleware

Middleware
• DroneAPI!

• Python

• Go to Kevin Hester’s talk tomorrow

• ROS + mavros!

• Python, C++, Lisp (really)

• Access to a wealth of robotics research and tools

Credit: Kabir Mohammed

PX4 + ROS

ROS
Crash
Course

Robot Operating System

“ROS is an open-source, meta-
operating system for your robot.”

– http://wiki.ros.org/ROS/Introduction

Nodes
• Process / address space

• ROS applications composed of many small nodes

• “Do one thing and do it well”

• Modular

• Reusable

• Separation of concerns

Topics
• Publish / subscribe message bus

• Strongly-typed messages

• Peer-to-peer message passing

• Centralized name registry (master node)

Services
• Similar to topics, but with request / reply semantics

• Think of it as RPC

but that's not all...
parameters
transformations
record/playback
visualization
logging

mavros

Topics
• /mavros/global_position/global

• /mavros/local_position/local

• /mavros/imu/data

• /mavros/state

• /mavros/setpoint_position/local_position

• /mavros/setpoint_velocity/cmd_vel

Services
• /mavros/cmd/arming

• /mavros/cmd/land

• /mavros/cmd/takeoff

• /mavros/set_mode

• /mavros/set_stream_rate

Event-driven programming
• “Don’t call me, I’ll call you”

• Your application code responds to events

• Message arrival

• “my position is (x, y, z)”

• Timer expiry

• “it’s time to run the control loop”

Example Application
Yet Another Precision Lander

Nodes
• Tracker!

• Processes video stream, looking for landing pad

• Publishes target position/velocity messages

• Commander!

• Subscribes to vehicle state and position messages

• Controls vehicle velocity

(TODO: code snippets)

Simulations

HITL
• Hardware in the loop

• Flight software runs on flight hardware

• Simulated sensor and control inputs

SITL
• Software in the loop

• Flight software runs on (Linux) desktop

• Simulated sensor and control inputs and HAL

ArduPilot SITL

PX4 SITL
• 3D simulation with Gazebo

• TODO

Practical
Considerations

Connections
• UART recommended

• USB works for development

Power
• UBEC

• ODROID + USB camera + WiFi + 3S LiPo = 5
hours

Launch files
• ROS feature that makes it easy to start and manage

multiple nodes and their parameters

• `roslaunch mavros apm.launch`

• `rosparam load ~/tracker.yaml /tracker`

Startup
• use ubuntu’s upstart to launch ROS + mavros +

application nodes

• robot_upstart

Telemetry
• MAVLink + radio

• WiFi

• Ad-Hoc mode (man wireless)

• sudo apt-get remove wpasupplicant

• GSM

Coordinate Frames
• Global / Local

• NED

• NEU

• ENU

• Body-fixed

• tf library

What will
you make?

ardupilot.com
pixhawk.org/start
ros.org
github.com/mavlink/mavros
github.com/claymation/lander

