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AUTONOMY

“system finds its own goal positions”



where to go
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where to go
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how to get there
what to do next
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• Real-time kernel 
• Hardware drivers (SPI, I2C, CAN, UART) 
• Device trees 
• Programmable real-time units 
• PixHawk Fire Cape 
• BeaglePilot project

Autopilot runs on Linux



• Linux runs on a companion computer 
• RS-232 serial interface to autopilot 
• Treat the autopilot as a peripheral 
• This is what I’m talking about today

Autopilot talks to Linux



ODROID-XU3 Lite
• Samsung Exynos5422 octa core 

• 4x Cortex™-A15 2.0GHz 

• 4x Cortex™-A7 1.4GHz 

• 2 GB RAM 

• 32+ GB flash 

• 4x USB 2.0 + 1x USB 3.0



Your App

Autopilot



Your App

Autopilot

Middleware



Middleware
• DroneAPI!

• Python 

• Go to Kevin Hester’s talk tomorrow 

• ROS + mavros!

• Python, C++, Lisp (really) 

• Access to a wealth of robotics research and tools



Credit: Kabir Mohammed

PX4 + ROS



ROS 
Crash 
Course



Robot Operating System

“ROS is an open-source, meta-
operating system for your robot.” 

– http://wiki.ros.org/ROS/Introduction



Nodes
• Process / address space 

• ROS applications composed of many small nodes 

• “Do one thing and do it well” 

• Modular 

• Reusable 

• Separation of concerns



Topics
• Publish / subscribe message bus 

• Strongly-typed messages 

• Peer-to-peer message passing 

• Centralized name registry (master node)



Services
• Similar to topics, but with request / reply semantics 

• Think of it as RPC



but that's not all...
parameters 
transformations 
record/playback 
visualization 
logging



mavros



Topics
• /mavros/global_position/global 

• /mavros/local_position/local 

• /mavros/imu/data 

• /mavros/state 

• /mavros/setpoint_position/local_position 

• /mavros/setpoint_velocity/cmd_vel



Services
• /mavros/cmd/arming 

• /mavros/cmd/land 

• /mavros/cmd/takeoff 

• /mavros/set_mode 

• /mavros/set_stream_rate



Event-driven programming
• “Don’t call me, I’ll call you” 

• Your application code responds to events 

• Message arrival 

• “my position is (x, y, z)” 

• Timer expiry 

• “it’s time to run the control loop”



Example Application
Yet Another Precision Lander



Nodes
• Tracker!

• Processes video stream, looking for landing pad 

• Publishes target position/velocity messages 

• Commander!

• Subscribes to vehicle state and position messages 

• Controls vehicle velocity





(TODO: code snippets)



Simulations



HITL
• Hardware in the loop 

• Flight software runs on flight hardware 

• Simulated sensor and control inputs



SITL
• Software in the loop 

• Flight software runs on (Linux) desktop 

• Simulated sensor and control inputs and HAL



ArduPilot SITL





PX4 SITL
• 3D simulation with Gazebo 

• TODO



Practical 
Considerations





Connections
• UART recommended 

• USB works for development



Power
• UBEC 

• ODROID + USB camera + WiFi + 3S LiPo = 5 
hours



Launch files
• ROS feature that makes it easy to start and manage 

multiple nodes and their parameters 

• `roslaunch mavros apm.launch` 

• `rosparam load ~/tracker.yaml /tracker`



Startup
• use ubuntu’s upstart to launch ROS + mavros + 

application nodes 

• robot_upstart



Telemetry
• MAVLink + radio 

• WiFi 

• Ad-Hoc mode (man wireless) 

• sudo apt-get remove wpasupplicant 

• GSM



Coordinate Frames
• Global / Local 

• NED 

• NEU 

• ENU 

• Body-fixed 

• tf library





What will  
you make?



ardupilot.com 
pixhawk.org/start 
ros.org 
github.com/mavlink/mavros 
github.com/claymation/lander


