

Clay McClure twitter.com/claymcclure github.com/claymation

stabilization telemetry missions failsafes

AUTO AUTO NOMOUS

"system finds its own goal positions"

"system finds its own goal positions" where to go

"system finds its own goal positions"

where to go how to get there

"system finds its own goal positions"

where to go how to get there what to do next

SO MAIN ALGORITHMS,

MFGAHERT/

Autopilot runs on Linux

- Real-time kernel
- Hardware drivers (SPI, I2C, CAN, UART)
- Device trees
- Programmable real-time units
- PixHawk Fire Cape
- BeaglePilot project

Autopilot talks to Linux

- Linux runs on a companion computer
- RS-232 serial interface to autopilot
- Treat the autopilot as a peripheral
- This is what I'm talking about today

ODROID-XU3 Lite

- Samsung Exynos5422 octa core
 - 4x Cortex[™]-A15 2.0GHz
 - 4x CortexTM-A7 1.4GHz
- 2 GB RAM
- 32+ GB flash
- 4x USB 2.0 + 1x USB 3.0

Your App

Autopilot

Your App

Middleware

Autopilot

Middleware

DroneAPI

- Python
- Go to Kevin Hester's talk tomorrow

ROS + mavros

- Python, C++, Lisp (really)
- Access to a wealth of robotics research and tools

PX4 + ROS

Credit: Kabir Mohammed

Robot Operating System

"ROS is an **open-source**, meta**operating system** for your **robot**."

http://wiki.ros.org/ROS/Introduction

Nodes

- Process / address space
- ROS applications composed of many small nodes
- "Do one thing and do it well"
- Modular
- Reusable
- Separation of concerns

Topics

- Publish / subscribe message bus
- Strongly-typed messages
- Peer-to-peer message passing
- Centralized name registry (master node)

Services

- Similar to topics, but with request / reply semantics
- Think of it as RPC

but that's not all...

parameters transformations record/playback visualization logging

mavros

Topics

- /mavros/global_position/global
- /mavros/local_position/local
- /mavros/imu/data
- /mavros/state
- /mavros/setpoint_position/local_position
- /mavros/setpoint_velocity/cmd_vel

Services

- /mavros/cmd/arming
- /mavros/cmd/land
- /mavros/cmd/takeoff
- /mavros/set_mode
- /mavros/set_stream_rate

Event-driven programming

- "Don't call me, I'll call you"
- Your application code responds to events
 - Message arrival
 - "my position is (x, y, z)"
 - Timer expiry
 - "it's time to run the control loop"

Example Application

Yet Another Precision Lander

Nodes

· Tracker

- Processes video stream, looking for landing pad
- Publishes target position/velocity messages

Commander

- Subscribes to vehicle state and position messages
- Controls vehicle velocity

(TODO: code snippets)

Simulations

HITL

- Hardware in the loop
- Flight software runs on flight hardware
- Simulated sensor and control inputs

SITL

- Software in the loop
- Flight software runs on (Linux) desktop
- Simulated sensor and control inputs and HAL

ArduPilot SITL

PX4 SITL

- 3D simulation with Gazebo
- TODO

Practical Considerations

Connections

- UART recommended
- USB works for development

Power

- UBEC
- ODROID + USB camera + WiFi + 3S LiPo = 5 hours

Launch files

- ROS feature that makes it easy to start and manage multiple nodes and their parameters
- roslaunch mavros apm.launch`
- `rosparam load ~/tracker.yaml /tracker`

Startup

- use ubuntu's upstart to launch ROS + mavros + application nodes
- robot_upstart

Telemetry

- MAVLink + radio
- WiFi
 - Ad-Hoc mode (man wireless)
 - sudo apt-get remove wpasupplicant
- GSM

Coordinate Frames

- Global / Local
 - NED
 - NEU
 - ENU
- Body-fixed
- tf library

ardupilot.com pixhawk.org/start ros.org github.com/mavlink/mavros github.com/claymation/lander