
Testing and remote access to embedded system
DPI/LVDS display output

Marek Vasut

June 28th, 2023

Table of content

I Motivation and why own hardware
I Display busses and capture options
I Approaches to the problem at hand
I Hardware build and testing
I LVDS encore
I Wrap up

Marek Vasut

I U-Boot bootloader custodian
I Linux kernel developer
I OE contributor
I FPGA hobbyist
I Consultant

Motivation

I SoM vendor development kit panel (re)testing
I Too many panel options for each development kit
I Testing them all means constant unplugging and replugging
I Eventually the connector fails …

I Remote access
I Sometimes it is not viable to ship hardware
I Hardware in limited quantity or early prototype stage …
I Sometimes it is convenient to put the hardware in rack and use

remote access from anywhere
I CI testing

I Automated SoM IO test in production is a must
I Automated test of all available panels on each update is great
I Automated testing improves confidence in release quality

Need Device which is plugged in once and can do all of the above.

Available options
I Grab fbdev content and stream it over e.g. ethernet
cons f1 Does not work (well) with modern DRM subsystem

(fbdev is deprecated for over a decade)
cons f2 A fully assembled frame buffer may not even exist in DRAM
cons f3 Does not provide any information about the situation past the

video buffer in DRAM (CRTC/BRIDGE(s)/CONNECTOR(s)),
i.e. the pixels which are sent to the panel itself

I Weston RDP backend
cons w1 Overhead of assembling and payloading buffers to RDP stream
cons w2 Same as f3 above, no information past DRAM buffer
I DRM subsystem CRTC CRC support

I CRTC on some SoCs is capable of returning CRC of currently
scanned out frame

I Used for functional safety reasons (e.g. in automotive)
I Used by [igt-gpu-tools] for CI testing

cons c1 No full image available for inspection/remote access
cons c2 Similar to f3 above, no information past CRTC output

Need Capture the whole display output of the device.

https://gitlab.freedesktop.org/drm/igt-gpu-tools

Embedded systems display busses

DPI Display Parallel Interface
I Likely oldest and simplest of still used interfaces
I Clock line, 1..24+ data lines, HS/VS/DE sync signals
I Wild source to sink data line mapping
I Uses LVTTL 3V3 signalling

FPD Flat Panel Display Link
I Uses LVDS – Low-Voltage Differential Signaling
I 1 differential clock lane + 3/4 differential data lanes
I Often incorrectly called LVDS
I FPD-Link is ≈ serialization of DPI
I Fewer available bus formats (1x 18bit and 2x 24bit)

DSI MIPI Display Serial Interface
I Entirely different from the above
I MIPI Alliance standard
I Differential signaling, multiple PHYs, HS/LP mode
I Packet based protocol with back channel

DPI bus

I Clock, data, HS, VS, DE signals
I Closely matches panel behavior
I Maximum clock rate limited by too many data lines
I Often found in older panels
I Signal polarity and sampling edge is important
I Different modes – HS/VS or DE
I Widely varying pixel formats

DPI Host
--------. .---------.
R[7:0] |>===============| |
G[7:0] |>===============| |
B[7:0] |>===============| Panel |
PCLK |>---------------| or |
HS |>---------------| Bridge |
VS |>---------------| |
DE |>---------------| |

--------' '---------'

DPI timing and synchronization
Linux 6.4-rc6
[Documentation/devicetree/bindings/display/panel/panel-timing.yaml]

/ HS __

/ +-------+----------+-------------------------------------+----------+
			^		
VS				vsync_len	
			v		
\ +-------+----------+-------------------------------------+----------+					
			^		
				vback_porch	
			v		
+-------+----------#######################################----------+					
		# ^ #			
		#	#		
	hsync	hback #	# hfront		
	len	porch #	hactive # porch		
	<----->	<-------->#<-------+--------------------------->#<-------->			
		#	#		
		#	vactive #		
		#	#		
		# v #			
+-------+----------#######################################----------+					
			^		
				vfront_porch	
			v		
+-------+----------+-------------------------------------+----------+					

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/display/panel/panel-timing.yaml?h=v6.4-rc6

DPI capture
I What should the device capture ?

I Active area only – fewer data, but incomplete
I Everything including margins – great for CI test

I DPI panel maximum resolution ≈ 1024x600 24bpp 60FPS
I Sampling other interesting signals

I Use signals above the 24bpp
I Capture 32bpp instead
I Interesting signals include HS/VS/DE and even PWM…

I Data rate at 1024x600 32bpp 60 FPS including margins
I Lets assume CDTech S070PWS19HP-FC21 panel
I Total width W (pixels) =

HSA+HBP +HACT +HFP = 20+ 140+ 1024+ 160 = 1344
I Total height H(lines) =

VSA + VBP + VACT + VFP = 3 + 20 + 600 + 12 = 635
I Total data rate

D = W ∗ H ∗ (32bpp/8) ∗ 60FPS ≈ 204MiB/s
I Data rate at 1920x1080 32bpp 60 FPS ≈ 500MiB/s

Need high bandwidth interface

CDTech S070PWS19HP-FC21 panel timing

Linux 6.4-rc6
[drivers/gpu/drm/panel/panel-simple.c L1263]

1 static const struct drm_display_mode cdtech_s070pws19hp_fc21_mode = {
2 .clock = 51200,
3 .hdisplay = 1024,
4 .hsync_start = 1024 + 160,
5 .hsync_end = 1024 + 160 + 20,
6 .htotal = 1024 + 160 + 20 + 140,
7 .vdisplay = 600,
8 .vsync_start = 600 + 12,
9 .vsync_end = 600 + 12 + 3,

10 .vtotal = 600 + 12 + 3 + 20,
11 .flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC,
12 };

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/gpu/drm/panel/panel-simple.c?h=v6.4-rc6#n1263

High bandwidth interfaces
What is available on most PCs and can receive high bandwidth
continuous stream of data?

Ethernet Gigabit
pro Almost every PC has gigabit ethernet plug
con Insufficient bandwidth of ≈ 125MiB/s

Ethernet Multiple bonded gigabit ethernets
con Too complex

Ethernet 10G ethernet
con Seldom available on contemporary PCs
con Complex and expensive on FPGA TX side

USB 2.0
pro Almost every PC has USB 2.0 plug
con Insufficient bandwidth of ≈ 60MiB/s
I Compression might help, but not useful for testing and CI

USB 3.0
pro Almost every PC has USB 3.0 plug
pro Enough bandwidth on root port of ≈ 625MiB/s

Need to use USB 3.0 and avoid any downstream hubs

32bit input to USB 3.0 bridge chips

Existing 32bit-input-to-USB3.0 bridge chips:
FTDI FT602Q

I 32bit RX FIFO to USB 3.0 UVC (USB Video Class) device
pro No need for firmware
pro USB UVC device, behaves like a webcam
con FT602Q is 100MHz or 66MHz clock source
con Need asynchronous FIFO between DPI⇔FT602Q

Cypress FX3
I 32bit general purpose interface, CPU, DMA, USB 3.0 device

pro Flexible due to CPU and 32bit up to 100 MHz GP interface
pro GP interface does support external clock input
pro Familiar ARM926EJS ARMv5 core
pro Documentation for the chip peripherals is good
pro Firmware examples contain CPI camera to UVC video demo
con CPI to UVC demo must be adapted and pixel format tweaked

Not all of vendor firmware SDK runs on Linux
Vendor firmware SDK is dubiously licensed outdated blobware

Multiple approaches

I DPI→FPGA→bridge as UVC→Host PC
I Maximum compatibility
I Native USB UVC support in most OSes (not enough)
I FPGA adds to price and complexity
I FX3 as UVC requires blobware firmware
I FX3 input state machine design tool does not work on Linux

I DPI→bridge as FIFO→Host PC
I Maximum simplicity
I Requires custom host software (easy)

I Read data from bridge
I Display / write to file / pass to e.g. gstreamer

Failed UVC blobwork

Device
under test FPGA

Bridge
chip

Host
PCDPI 32bit USB3.0

Multiple problems:
1. UVC USB Video Class does not support varying resolution
2. Both FT602Q and FX3 in UVC mode expect CPI sensor input

UVC pixel format inflexibility

I USB UVC is USB-IF (Implementers Forum) standard
I Stream width, height, pixel format, bitrate, …

all encoded in static USB descriptors
I Not all pixel formats supported by various OSes are part of

the USB-IF standard
I Some pixel formats are non-standard extensions, usually

poorly documented
I BGRX8888 extension pixel format now in Linux 6.1.y

media: uvcvideo: Add GUID for BGRA/X 8:8:8:8
I Cypress firmware can be patched to produce this format
I As far as I can tell, patch cannot be distributed due to SDK

licensing

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=015d44c2b700ba9639dd29672ba362796cc0be54

UVC resolution inflexibility

I UVC USB Video Class does not support changing resolution
during streaming

I The DPI input resolution may change at runtime or even
fluctuate (during debugging)

I Linux kernel uvcvideo driver expects continuous stream
I Linux kernel uvcvideo driver checks line width
I Frames with short lines dropped without module parameter:

uvcvideo nodrop=1
I Both gstreamer and ffmpeg check V4L2 frame size
I Short frames are dropped unless either is patched

This is not really seamless experience

CPI timing and synchronization
I CPI uses two sync signals to denote active area with valid

pixels
LV Line Valid – Indicates active columns (≈ HFP + HSA + HBP)
FV Frame Valid – Indicates valid rows (≈ VFP + VSA + VBP)
I Example: MT9P006 Pixel Array Structure + LV and FV

__________/ LV __________

| +---------+-------------------------------------+---------+
		^		
			dark rows	
		v		
/ +---------#######################################---------+

	# ^ #	
	#	#
	dark #	# dark
	columns #	hactive # columns
FV	<------->#<-------+--------------------------->#<------->	
	#	#
	#	vactive #
	#	#
	# v #	
\ +---------#######################################---------+		
		^
		v
+---------+-------------------------------------+---------+		

https://www.onsemi.com/download/data-sheet/pdf/mt9p006-d.pdf

CPI vs. DPI timing
Need adapter which converts DPI sync signals to CPI sync signals

___________________/ LV ___________

/ HS __

| / +-------+----------+-------------------------------------+----------+
				^		
	VS				vsync_len	
				v		
\ +-------+----------+-------------------------------------+----------+						
				^		
					vback_porch	
				v		
/ | +-------+----------#######################################----------+

			# ^ #	
			#	#
		hsync	hback #	# hfront
		len	porch #	hactive # porch
FV		<----->	<-------->#<-------+--------------------------->#<-------->	
			#	#
			#	vactive #
			#	#
			# v #	
\	+-------+----------#######################################----------+			
				^
				v
	+-------+----------+-------------------------------------+----------+			

FPGA asynchronous FIFO

Device
under test

FPGA Async FIFO

FPGA
FIFO
tto
CPI
logic

fin

DPI

fout

32bit

Fill level

fout

CPI

I Crossing clock domains with an Asynchronous FIFO
The ZipCPU by Gisselquist Technology

I A FIFO used to move wider data from one clock domain to
another

I Width and depth often configurable

https://zipcpu.com/blog/2018/07/06/afifo.html

FPGA asynchronous FIFO implementation
I Assume fin < fout
I Assume FIFO width is 32 bits and depth is slightly more than

1 full line worth of pixels
I FIFO fill level ≈ LV
I When FIFO contains 1 line worth of input data, it can be

flushed into the output bridge
I Padding to the width configured in the UVC descriptors is

necessary
I Line counting to emulate FV is necessary
I The FV can be a short pulse (not a full line) for FX3 to

recognize it
I If FIFO output does not produce data for too long ⇒ this is

loss of signal
I FIFO must be carefully placed in FPGA and timing

constraints are a much
I Altera Cyclone IV/E maxed out at fout ≈ 65 MHz

Failed UVC blobwork is failed

Summary:
I UVC was not a win due to necessary workarounds
I Firmware patching was extremely problematic
I DPI to CPI adapter using FPGA is convoluted

Success with bridge as FIFO

Device
under test

Bridge
chip

Host
PCDPI USB3.0

I FTDI FT601Q is 32bit FIFO to USB 3.0, but still clock source
I Cypress FX3 is capable of being a clock sink
I Capture raw byte stream using FX3, process on Host PC
I The FX3 firmware and tooling is still a problem
I The vendor tooling is a problem

sigrok

I sigrok project
The sigrok project aims at creating a portable, cross-platform,
Free/Libre/Open-Source signal analysis software suite that
supports various device types (e.g. logic analyzers,
oscilloscopes, and many more).

I fx2lafw
fx2lafw is an open-source firmware for Cypress FX2 chips
which makes them usable as simple logic analyzer and/or
oscilloscope hardware.

If only there was similar firmware for Cypress FX3.

https://sigrok.org/wiki/Main_Page
https://sigrok.org/wiki/Fx2lafw

fx3lafw

I fx3lafw [link] by Marcus Comstedt
This is an open source firmware for using a Cypress FX3 USB
controller as a logic analyzer with sigrok. It does not rely on
any libraries or tools provided by Cypress under license.

I Suggested by t4nk at sigrok channel during unrelated
discussion – THANK YOU!

I No need to use the Cypress blobware anymore
I Compatible with fx2lafw with extension to support faster

sampling
I Uses clock generated by FX3 to oversample the 32bit bus
I sigrok support is implemented by a few easy patches to

libsigrok [link], currently outdated, but rebase is easy

https://github.com/zeldin/fx3lafw
https://github.com/sigrokproject/libsigrok/pull/154

What is missing

I Switch the fx3lafw to use external clock from DPI
I Capture data using sigrok and pipe them into e.g. gstreamer
I Replace sigrok with something more lightweight
I Build more permanent hardware setup

Patching fx3lafw
I Clock direction bit must be flipped
I SYNC/SPEED bits must be enabled

Needed for higher speed capture and capture synchronous to
input PCLK

I DLL must be disabled else slight data loss happens
Resulting image crawls slowly to the left and wraps around

I Input PCLK invert configuration (for selection of PCLK
sampling edge) is a good tunable to have, implemented using
libusb control endpoint, like other fx2lafw configuration
messages

I Use libusb fxload example tool to load firmware into FX3
(or run sigrok-cli twice, the first time will fail to
re-enumerate the FX3 as it changed bus from USB 2.0 to
USB 3.0 and libsigrok cannot handle that yet)

I Patched fx3lafw [link]

https://gitlab.com/fx3ci/fx3lafw/-/tree/fx3stream

Build and use fx3lafw

Udev rule (use 'udevadm control -R' to reload the rules once added)
$ cat /etc/udev/rules.d/92-cypress.rules
SUBSYSTEM=="usb", ATTRS{idVendor}=="04b4", ATTRS{idProduct}=="00f3", MODE="0666"

fx3lafw $ git clean -fqdx
fx3lafw $ make -j$(nproc)
For sigrok purposes
fx3lafw $ cp fx3lafw-cypress-fx3.fw /usr/share/sigrok-firmware/
For libusb/fxload purposes
fx3lafw $ cp -Lv fx3lafw-cypress-fx3.fw fx3lafw-cypress-fx3.img
fx3lafw $ /libusb/examples/fxload -t fx3 -i fx3lafw-cypress-fx3.img

sigrok continuous capture

I The sigrok-cli tool supports triggering capture from
command line

I Captured data can be stored into a file in different formats:
I -O binary or -O csv …
I Capture into file is useful for detailed analysis
I The file can be a named pipe (FIFO) for realtime visualization
I FIFO needs a consumer too

I sigrok supports software triggers -t channel,
useful to trigger on edge of sync signal(s)

I Gerhard Sittig of sigrok fame suggests --continuous option

$ mkfifo /tmp/fifo
$ sigrok-cli -D -d fx2lafw --continuous --channels \
D0,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,\
D17,D18,D19,D20,D21,D22,D23,D24,D25,D26,D27,D28,D29,D30,D31 \
-t D24=r --config samplerate=192m -l 5 -o /tmp/fifo -O binary

Gstreamer FIFO consumer

I The last step is to create FIFO consumer that can visualize
the data

I Gstreamer is a good candidate with gst-launch-1.0 tool
I Easily assemble a pipeline
I It is necessary to know the input stream resolution, otherwise

the visualization will be distorted
I Lets assume CDTech S070PWS19HP-FC21 panel again

1024x600 active area, 1344x635 including margins

$ W=1344 H=635 S=$((4*$W*$H)) ; gst-launch-1.0 \
filesrc location=/tmp/fifo blocksize=${S} ! \
video/x-raw,width=${W},height=${H},framerate=60/1,format=RGBx ! \
queue ! \
videoconvert ! \
autovideosink

Replacing the RX with light weight tool
I A more light-weight tool called fx3stream is available at

[link]
I Based on libusb with optional xlib and gstreamer dependencies
I The tool is currently rudimentary
I Provides three sink options – FIFO, Gstreamer, X11 window
I Gstreamer sink is an appsink which push feeds gstreamer

pipeline
I Provides frame rate counter (using gstreamer

fpsdisplaysink)
I Provides sync signals visualization
I Compile, upload fx3lafw to FX3 using fxload, run the tool

Usage: ./stream-gst <width> <height> <pclkpol> <vsdetpol> <colorsync>
width width of input frame, including HSA HBP HACT HFP
height height of input frame, including VSA VBP VACT VFP
pclkpol 0 - PCLK sampled on RISING edge

1 - PCLK sampled on FALLING edge
vsdetpol 0 - VSYNC lock on RISING edge

1 - VSYNC lock on FALLING edge
colorsync ... 0 - do not color sync signals in frame

1 - color active HIGH sync signals
2 - color active LOW sync signals

GSTFPS=1 environment variable enables frame rate counter overlay

https://gitlab.com/fx3ci/fx3stream

Demo – Linux is booting
I Chefree CH101OLHLWH-002 1280x800 panel connected via

DPI-to-LVDS bridge. The capture is attached to the DPI, i.e.
before the DPI-to-LVDS bridge.

I Host: $./stream-gst 1440 823 0 0 0

I U-Boot fdt command lets you override panel type easily in
bootloader. Great for testing.
=> fdt set /panel compatible
"chefree,ch101olhlwh-002"

Demo – Linux, FPS overlay

I Host: $ GSTFPS=1 ./stream-gst 1440 823 0 0 0

Demo – Linux, Sync signals visualization and FPS
I Great for CI and debugging purposes.
I Device: weston-simple-dmabuf-egl &

weston-simple-dmabuf-egl & weston-simple-egl
I Host: $ GSTFPS=1 ./stream-gst 1440 823 0 0 2

I You can also store the entire pixel stream into a file using $
stream-fifo tool, which includes per-clock-cycle ≈ per-pixel
sync signal information and validate that your display is
operated exactly within display vendor datasheet requirements.

Demo – Weston, with FPS, with FPS
I Device: gst-launch-1.0 videotestsrc !

video/x-raw,width=800,height=600 ! queue !
fpsdisplaysink video-sink=autovideosink

I Host: $ GSTFPS=1 ./stream-gst 1440 823 0 0 2

Loss of signal handling

I The FX3 expects continuous PCLK input
I Loss of signal triggers GPIF PIB interrupt and stop of capture
I Patch out that interrupt generation
I The FX3 also contains clock loss detection interrupt
I Test the clock loss interrupt generation, it does work
I With patched out GPIF PIB stop interrupt, clock loss

interrupt is not needed
I FX3 is not sending any data on clock loss, and recovers when

clock are back

Hardware

I The Cypress CYUSB3KIT-003 is convenient
I It provides two 2x20 2.54mm plus spaced 41.5mm apart
I It is possible to use easy to get 2.54mm M-x cables
I With fly wiring, higher clock frequencies are a problem
I Making permanent hardware connection is a matter of trivial

adapter PCB
I Trivial adapter PCB can be designed in KiCad and

manufactured at PCB house
I PCB houses these days can do a lot for you, even populate

the PCB …
I Make sure you check your newly populated PCB for shorts …

KiCad – Adapter board schematic

Make sure you run ERC

KiCad – Adapter board PCB

Make sure you run DRC

KiCad – Entire assembly

Stream from the device looks as expected, no surprises there.

LVDS bus

I Basically a serialization of DPI bus
I ANSI/TIA/EIA-644-A
I Pixel format limited to three options:

I jeida-18 (SPWG, LDI, VESA)
I jeida-24 (DSIM, LDI)
I vesa-24 (VESA)

I Differential signalling, 1 clock lane, 3 or 4 data lanes
I High resolution panels often use dual-link LVDS

LVDS Host
---------. .---------.
CLK P/N |>===============| |
D0 P/N |>===============| Panel |
D1 P/N |>===============| or |
D2 P/N |>===============| Bridge |
D3 P/N |>===============| |

---------' '---------'

LVDS bus
x 0 1 2 3 4 5 6 x …

CLK x H H L L L H H x …
DATA0 x G0 R5 R4 R3 R2 R1 R0 x …
DATA1 x B1 B0 G5 G4 G3 G2 G1 x …
DATA2 x DE VS HS B5 B4 B3 B2 x …

Figure: LVDS JEIDA-18 3-lane LVDS bus
x 0 1 2 3 4 5 6 x …

CLK x H H L L L H H x …
DATA0 x G2 R7 R6 R5 R4 R3 R2 x …
DATA1 x B3 B2 G7 G6 G5 G4 G3 x …
DATA2 x DE VS HS B7 B6 B5 B4 x …
DATA3 x 00 B1 B0 G1 G0 R1 R0 x …

Figure: LVDS JEIDA-24 4-lane LVDS bus
x 0 1 2 3 4 5 6 x …

CLK x H H L L L H H x …
DATA0 x G0 R5 R4 R3 R2 R1 R0 x …
DATA1 x B1 B0 G5 G4 G3 G2 G1 x …
DATA2 x DE VS HS B5 B4 B3 B2 x …
DATA3 x 00 B7 B6 G7 G6 R7 R6 x …

Figure: LVDS VESA-24 4-lane LVDS bus

LVDS to DPI

I LVDS to DPI deserializer chips do exist
I For example TI DS90CF384, OnSemi FIN3386, Thine

THC63LVDF84B …
I Use one of the chips and convert LVDS problem to already

solved DPI problem
I Use capacitors close to the chip supplies
I Carefully route LVDS differential lines
I LVDS lines require 100Ω termination

Dual-link LVDS

I Uses 8 differential pairs, transmits 2 pixels at a time
I Used to drive 1920x1080 FullHD panels where single-link

LVDS does not suffice
I Pixels always sent as odd-even pixel pair
I Likely can be captured using TI DS90CF388 de-serializer and

two FX3
I Pixel reassembly on Host PC, possibly using Gstreamer ORC

SIMD

Demo – Linux is booting

I Lets assume EDT ETML0700Y5DHA panel
I Host: $./stream-gst 1344 635 0 1 0

Demo – Linux, FPS overlay

I Host: $ GSTFPS=1 ./stream-gst 1344 635 0 1 0

Demo – Linux, Sync signals visualization and FPS

I Great for CI and debugging purposes
I Host: $ GSTFPS=1 ./stream-gst 1344 635 0 1 2

Demo – Weston, with FPS, with FPS

I Host: $ GSTFPS=1 ./stream-gst 1344 635 0 1 2
I The image stretch left and right is CRTC leaving the data

lines in pre-sync state during sync period instead of setting
them to zero

KiCad – Adapter board schematic

Make sure you run ERC

It is a really good idea to learn KiCad key bindings (it is faster)

KiCad – Schematic symbol design
LVDS de-serializer schematic symbols may not be in the KiCad
library

Derive symbol from existing high quality symbols in the library

KiCad – Adapter board PCB

Make sure you run DRC

KiCad – 3D view
Soldering TSSOP56 package at home takes practice and patience
Same for 0402 passive components like resistors, don’t inhale them

Get a good flux, soldering iron, fume extractor, maybe a loupe …

KiCad – Populated board

KiCad – Entire assembly

Stream from the device looks as expected, no surprises there.

Next steps – MIPI DSI

I Packet based
I Multiple different PHY options (C-PHY/D-PHY/M-PHY)
I Likely target D-PHY as it is most common in embedded
I Would require FPGA PHY ≈ HS/LP RX, byte aligner,

depacketizer
I HS/LP input into FPGA can be implemented using a few

termination resistors and suitable FPGA with the right IO
voltage on the right banks

I Multiple FPGA CSI-2 D-PHY RX exists already:
I CircuitValley [link]
I gatecat [link]

I Extracted packets can be fed into FX3 and captured on PC
I sigrok protocol decoder support might be useful here too

https://www.circuitvalley.com/2020/02/imx219-camera-mipi-csi-receiver-fpga-lattice-raspberry-pi-camera.html
https://github.com/gatecat/CSI2Rx

Wrap up

I Hardware is obtainable – FX3 kit and adapter board
I Software is available
I Build is easy

End

Thank you for your attention

Questions ?

Marek Vasut <marek.vasut+eoss23@mailbox.org>

